1 source("RemembR/R/RemembeR.R")
8 parser <- arg_parser("Simulate data and fit corrected models.")
9 parser <- add_argument(parser, "--infile", default="", help="name of the file to read.")
10 parser <- add_argument(parser, "--name", default="", help="The name to safe the data to in the remember file.")
11 args <- parse_args(parser)
15 summarize.estimator <- function(df, suffix='naive', coefname='x'){
20 paste0('B',coefname,'y.est.',suffix),
21 paste0('B',coefname,'y.ci.lower.',suffix),
22 paste0('B',coefname,'y.ci.upper.',suffix),
23 'y_explained_variance',
28 true.in.ci <- as.integer((part$Bxy >= part[[paste0('B',coefname,'y.ci.lower.',suffix)]]) & (part$Bxy <= part[[paste0('B',coefname,'y.ci.upper.',suffix)]]))
29 zero.in.ci <- as.integer(0 >= part[[paste0('B',coefname,'y.ci.lower.',suffix)]]) & (0 <= part[[paste0('B',coefname,'y.ci.upper.',suffix)]])
30 bias <- part$Bxy - part[[paste0('B',coefname,'y.est.',suffix)]]
31 sign.correct <- as.integer(sign(part$Bxy) == sign(part[[paste0('B',coefname,'y.est.',suffix)]]))
33 part <- part[,':='(true.in.ci = true.in.ci,
34 zero.in.ci = zero.in.ci,
36 sign.correct =sign.correct)]
38 part.plot <- part[, .(p.true.in.ci = mean(true.in.ci),
39 mean.bias = mean(bias),
40 mean.est = mean(.SD[[paste0('B',coefname,'y.est.',suffix)]]),
41 var.est = var(.SD[[paste0('B',coefname,'y.est.',suffix)]]),
42 est.upper.95 = quantile(.SD[[paste0('B',coefname,'y.est.',suffix)]],0.95),
43 est.lower.95 = quantile(.SD[[paste0('B',coefname,'y.est.',suffix)]],0.05),
45 p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
49 by=c("N","m",'Bzy','y_explained_variance')
56 build_plot_dataset <- function(df){
58 x.true <- summarize.estimator(df, 'true','x')
59 z.true <- summarize.estimator(df, 'true','z')
61 x.naive <- summarize.estimator(df, 'naive','x')
62 z.naive <- summarize.estimator(df, 'naive','z')
64 x.feasible <- summarize.estimator(df, 'feasible','x')
65 z.feasible <- summarize.estimator(df, 'feasible','z')
67 x.amelia.full <- summarize.estimator(df, 'amelia.full','x')
68 z.amelia.full <- summarize.estimator(df, 'amelia.full','z')
70 x.mle <- summarize.estimator(df, 'mle','x')
71 z.mle <- summarize.estimator(df, 'mle','z')
73 x.zhang <- summarize.estimator(df, 'zhang','x')
74 z.zhang <- summarize.estimator(df, 'zhang','z')
76 accuracy <- df[,mean(accuracy)]
78 plot.df <- rbindlist(list(x.true, z.true, x.naive,z.naive,x.amelia.full,z.amelia.full,x.mle, z.mle, x.zhang, z.zhang, x.feasible, z.feasible),use.names=T)
80 plot.df[,accuracy := accuracy]
82 plot.df <- plot.df[,":="(sd.est=sqrt(var.est)/N.sims)]
88 df <- read_feather(args$infile)
89 plot.df <- build_plot_dataset(df)
91 remember(plot.df,args$name)
94 ## df[gmm.ER_pval<0.05]
95 ## plot.df.test <- plot.df[,':='(method=factor(method,levels=c("Naive","Multiple imputation", "Multiple imputation (Classifier features unobserved)","Regression Calibration","2SLS+gmm","Bespoke MLE", "Feasible"),ordered=T),
100 ## plot.df.test <- plot.df.test[(variable=='z') & (m != 1000) & (m!=500) & !is.na(p.true.in.ci) & (method!="Multiple imputation (Classifier features unobserved)")]
101 ## p <- ggplot(plot.df.test, aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method))
102 ## p <- p + geom_hline(aes(yintercept=-0.05),linetype=2)
104 ## p <- p + geom_pointrange() + facet_grid(m~N,as.table=F) + scale_x_discrete(labels=label_wrap_gen(4))
106 ## ggplot(plot.df[variable=='x'], aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method)) + geom_pointrange() + facet_grid(-m~N) + scale_x_discrete(labels=label_wrap_gen(10))
108 ## ggplot(plot.df,aes(y=N,x=m,color=p.sign.correct)) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c(option='D') + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size")
110 ## ggplot(plot.df,aes(y=N,x=m,color=abs(mean.bias))) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c(option='D') + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size")