1 source("RemembR/R/RemembeR.R")
8 parser <- arg_parser("Simulate data and fit corrected models.")
9 parser <- add_argument(parser, "--infile", default="", help="name of the file to read.")
10 parser <- add_argument(parser, "--name", default="", help="The name to safe the data to in the remember file.")
11 args <- parse_args(parser)
13 summarize.estimator <- function(df, suffix='naive', coefname='x'){
18 paste0('B',coefname,'y.est.',suffix),
19 paste0('B',coefname,'y.ci.lower.',suffix),
20 paste0('B',coefname,'y.ci.upper.',suffix),
21 'y_explained_variance',
24 'accuracy_imbalance_difference'
28 true.in.ci <- as.integer((part$Bxy >= part[[paste0('B',coefname,'y.ci.lower.',suffix)]]) & (part$Bxy <= part[[paste0('B',coefname,'y.ci.upper.',suffix)]]))
29 zero.in.ci <- as.integer(0 >= part[[paste0('B',coefname,'y.ci.lower.',suffix)]]) & (0 <= part[[paste0('B',coefname,'y.ci.upper.',suffix)]])
30 bias <- part$Bxy - part[[paste0('B',coefname,'y.est.',suffix)]]
31 sign.correct <- as.integer(sign(part$Bxy) == sign(part[[paste0('B',coefname,'y.est.',suffix)]]))
33 part <- part[,':='(true.in.ci = true.in.ci,
34 zero.in.ci = zero.in.ci,
36 sign.correct =sign.correct)]
38 part.plot <- part[, .(p.true.in.ci = mean(true.in.ci),
39 mean.bias = mean(bias),
40 mean.est = mean(.SD[[paste0('B',coefname,'y.est.',suffix)]]),
41 var.est = var(.SD[[paste0('B',coefname,'y.est.',suffix)]]),
42 est.upper.95 = quantile(.SD[[paste0('B',coefname,'y.est.',suffix)]],0.95,na.rm=T),
43 est.lower.95 = quantile(.SD[[paste0('B',coefname,'y.est.',suffix)]],0.05,na.rm=T),
45 p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
49 by=c("N","m",'y_explained_variance','Bzx', 'Bzy', 'accuracy_imbalance_difference')
55 build_plot_dataset <- function(df){
57 x.true <- summarize.estimator(df, 'true','x')
59 z.true <- summarize.estimator(df, 'true','z')
61 x.naive <- summarize.estimator(df, 'naive','x')
63 z.naive <- summarize.estimator(df,'naive','z')
65 x.feasible <- summarize.estimator(df, 'feasible', 'x')
67 z.feasible <- summarize.estimator(df, 'feasible', 'z')
69 x.amelia.full <- summarize.estimator(df, 'amelia.full', 'x')
71 z.amelia.full <- summarize.estimator(df, 'amelia.full', 'z')
73 x.mecor <- summarize.estimator(df, 'mecor', 'x')
75 z.mecor <- summarize.estimator(df, 'mecor', 'z')
77 x.mecor <- summarize.estimator(df, 'mecor', 'x')
79 z.mecor <- summarize.estimator(df, 'mecor', 'z')
81 x.mle <- summarize.estimator(df, 'mle', 'x')
83 z.mle <- summarize.estimator(df, 'mle', 'z')
85 x.zhang <- summarize.estimator(df, 'zhang', 'x')
87 z.zhang <- summarize.estimator(df, 'zhang', 'z')
89 x.gmm <- summarize.estimator(df, 'gmm', 'x')
91 z.gmm <- summarize.estimator(df, 'gmm', 'z')
93 accuracy <- df[,mean(accuracy)]
94 plot.df <- rbindlist(list(x.true,z.true,x.naive,z.naive,x.amelia.full,z.amelia.full,x.mecor, z.mecor, x.gmm, z.gmm, x.feasible, z.feasible,z.mle, x.mle, x.zhang, z.zhang, x.gmm, z.gmm),use.names=T)
95 plot.df[,accuracy := accuracy]
96 plot.df <- plot.df[,":="(sd.est=sqrt(var.est)/N.sims)]
101 plot.df <- read_feather(args$infile)
102 print(unique(plot.df$N))
104 # df <- df[apply(df,1,function(x) !any(is.na(x)))]
106 if(!('Bzx' %in% names(plot.df)))
109 if(!('accuracy_imbalance_difference' %in% names(plot.df)))
110 plot.df[,accuracy_imbalance_difference:=NA]
112 unique(plot.df[,'accuracy_imbalance_difference'])
114 #plot.df <- build_plot_dataset(df[accuracy_imbalance_difference==0.1][N==700])
115 plot.df <- build_plot_dataset(plot.df)
117 remember(plot.df,args$name)
119 #ggplot(df,aes(x=Bxy.est.mle)) + geom_histogram() + facet_grid(accuracy_imbalance_difference ~ Bzy)
121 ## ## ## df[gmm.ER_pval<0.05]
123 ## plot.df.test <- plot.df[,':='(method=factor(method,levels=c("Naive","Multiple imputation", "Multiple imputation (Classifier features unobserved)","Regression Calibration","2SLS+gmm","Bespoke MLE", "Feasible"),ordered=T),
127 ## plot.df.test <- plot.df.test[(variable=='x') & (method!="Multiple imputation (Classifier features unobserved)")]
128 ## p <- ggplot(plot.df.test, aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method))
129 ## p <- p + geom_hline(data=plot.df.test, mapping=aes(yintercept=0.1),linetype=2)
131 ## p <- p + geom_pointrange() + facet_grid(N~m,as.table=F,scales='free') + scale_x_discrete(labels=label_wrap_gen(4))
134 ## plot.df.test <- plot.df[,':='(method=factor(method,levels=c("Naive","Multiple imputation", "Multiple imputation (Classifier features unobserved)","Regression Calibration","2SLS+gmm","Bespoke MLE", "Feasible"),ordered=T),
138 ## plot.df.test <- plot.df.test[(variable=='z') & (method!="Multiple imputation (Classifier features unobserved)")]
139 ## p <- ggplot(plot.df.test, aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method))
140 ## p <- p + geom_hline(data=plot.df.test, mapping=aes(yintercept=-0.1),linetype=2)
142 ## p <- p + geom_pointrange() + facet_grid(m~N,as.table=F,scales='free') + scale_x_discrete(labels=label_wrap_gen(4))
146 ## x.mle <- df[,.(N,m,Bxy.est.mle,Bxy.ci.lower.mle, Bxy.ci.upper.mle, y_explained_variance, Bzx, Bzy, accuracy_imbalance_difference)]
147 ## x.mle.plot <- x.mle[,.(mean.est = mean(Bxy.est.mle),
148 ## var.est = var(Bxy.est.mle),
151 ## method='Bespoke MLE'
153 ## by=c("N","m",'y_explained_variance', 'Bzx', 'Bzy','accuracy_imbalance_difference')]
155 ## z.mle <- df[,.(N,m,Bzy.est.mle,Bzy.ci.lower.mle, Bzy.ci.upper.mle, y_explained_variance, Bzx, Bzy, accuracy_imbalance_difference)]
157 ## z.mle.plot <- z.mle[,.(mean.est = mean(Bzy.est.mle),
158 ## var.est = var(Bzy.est.mle),
161 ## method='Bespoke MLE'
163 ## by=c("N","m",'y_explained_variance','Bzx')]
165 ## plot.df <- z.mle.plot
166 ## plot.df.test <- plot.df[,':='(method=factor(method,levels=c("Naive","Multiple imputation", "Multiple imputation (Classifier features unobserved)","Regression Calibration","2SLS+gmm","Bespoke MLE", "Feasible"),ordered=T),
170 ## plot.df.test <- plot.df.test[(variable=='z') & (m != 1000) & (m!=500) & (method!="Multiple imputation (Classifier features unobserved)")]
171 ## p <- ggplot(plot.df.test, aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method))
172 ## p <- p + geom_hline(aes(yintercept=0.2),linetype=2)
174 ## p <- p + geom_pointrange() + facet_grid(m~Bzx, Bzy,as.table=F) + scale_x_discrete(labels=label_wrap_gen(4))
178 ## ## ggplot(plot.df[variable=='x'], aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method)) + geom_pointrange() + facet_grid(-m~N) + scale_x_discrete(labels=label_wrap_gen(10))
180 ## ## ggplot(plot.df,aes(y=N,x=m,color=p.sign.correct)) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c(option='D') + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size")
182 ## ## ggplot(plot.df,aes(y=N,x=m,color=abs(mean.bias))) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c(option='D') + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size")