]> code.communitydata.science - ml_measurement_error_public.git/blob - simulations/simulation_base.R
Update the core 4 simulations.
[ml_measurement_error_public.git] / simulations / simulation_base.R
1 library(predictionError)
2 library(mecor)
3 options(amelia.parallel="no",
4         amelia.ncpus=1)
5 library(Amelia)
6 library(Zelig)
7 library(bbmle)
8 library(matrixStats) # for numerically stable logsumexps
9
10 source("measerr_methods.R") ## for my more generic function.
11
12 ## This uses the pseudolikelihood approach from Carroll page 349.
13 ## assumes MAR
14 ## assumes differential error, but that only depends on Y
15 ## inefficient, because pseudolikelihood
16     
17 ## This uses the pseudo-likelihood approach from Carroll page 346.
18 my.pseudo.mle <- function(df){
19     p1.est <- mean(df[w_pred==1]$y.obs==1,na.rm=T)
20     p0.est <- mean(df[w_pred==0]$y.obs==0,na.rm=T)
21     
22     nll <- function(B0, Bxy, Bzy){
23
24         pw <- vector(mode='numeric',length=nrow(df))
25         dfw1 <- df[w_pred==1]
26         dfw0 <- df[w_pred==0]
27         pw[df$w_pred==1] <- plogis(B0 + Bxy * dfw1$x + Bzy * dfw1$z, log=T)
28         pw[df$w_pred==0] <- plogis(B0 + Bxy * dfw0$x + Bzy * dfw0$z, lower.tail=FALSE, log=T)
29         
30         probs <- colLogSumExps(rbind(log(1 - p0.est), log(p1.est + p0.est - 1) + pw))
31         return(-1*sum(probs))
32     }
33     
34     mlefit <- mle2(minuslogl = nll, start = list(B0=0.0, Bxy=0.0, Bzy=0.0), control=list(maxit=1e6),method='L-BFGS-B')
35     return(mlefit)
36
37 }
38
39
40 ## model from Zhang's arxiv paper, with predictions for y
41 ## Zhang got this model from Hausman 1998
42 ### I think this is actually eqivalent to the pseudo.mle method
43 zhang.mle.iv <- function(df){
44     df.obs <- df[!is.na(x.obs)]
45     df.unobs <- df[is.na(x.obs)]
46
47     tn <- df.obs[(w_pred == 0) & (x.obs == w_pred),.N]
48     pn <- df.obs[(w_pred==0), .N]
49     npv <- tn / pn
50
51     tp <- df.obs[(w_pred==1) & (x.obs == w_pred),.N]
52     pp <- df.obs[(w_pred==1),.N]
53     ppv <- tp / pp
54
55     nll <- function(B0=0, Bxy=0, Bzy=0, sigma_y=0.1){
56
57     ## fpr = 1 - TNR
58     ### Problem: accounting for uncertainty in ppv / npv
59
60     ## fnr = 1 - TPR
61     ll.y.obs <- with(df.obs, dnorm(y, B0 + Bxy * x + Bzy * z, sd=sigma_y,log=T))
62     ll <- sum(ll.y.obs)
63     
64     # unobserved case; integrate out x
65     ll.x.1 <- with(df.unobs, dnorm(y, B0 + Bxy + Bzy * z, sd = sigma_y, log=T))
66     ll.x.0 <- with(df.unobs, dnorm(y, B0 + Bzy * z, sd = sigma_y,log=T))
67
68     ## case x == 1
69     lls.x.1 <- colLogSumExps(rbind(log(ppv) + ll.x.1, log(1-ppv) + ll.x.0))
70     
71     ## case x == 0
72     lls.x.0 <- colLogSumExps(rbind(log(1-npv) + ll.x.1, log(npv) + ll.x.0))
73
74     lls <- colLogSumExps(rbind(df.unobs$w_pred * lls.x.1, (1-df.unobs$w_pred) * lls.x.0))
75     ll <- ll + sum(lls)
76     return(-ll)
77     }    
78     mlefit <- mle2(minuslogl = nll, control=list(maxit=1e6), lower=list(sigma_y=0.0001, B0=-Inf, Bxy=-Inf, Bzy=-Inf),
79                    upper=list(sigma_y=Inf, B0=Inf, Bxy=Inf, Bzy=Inf),method='L-BFGS-B')
80     return(mlefit)
81 }
82
83 ## this is equivalent to the pseudo-liklihood model from Caroll
84 ## zhang.mle.dv <- function(df){
85
86 ##     nll <- function(B0=0, Bxy=0, Bzy=0, ppv=0.9, npv=0.9){
87 ##     df.obs <- df[!is.na(y.obs)]
88
89 ##     ## fpr = 1 - TNR
90 ##     ll.w0y0 <- with(df.obs[y.obs==0],dbinom(1-w_pred,1,npv,log=TRUE))
91 ##     ll.w1y1 <- with(df.obs[y.obs==1],dbinom(w_pred,1,ppv,log=TRUE))
92
93 ##     # observed case
94 ##     ll.y.obs <- vector(mode='numeric', length=nrow(df.obs))
95 ##     ll.y.obs[df.obs$y.obs==1] <- with(df.obs[y.obs==1], plogis(B0 + Bxy * x + Bzy * z,log=T))
96 ##     ll.y.obs[df.obs$y.obs==0] <- with(df.obs[y.obs==0], plogis(B0 + Bxy * x + Bzy * z,log=T,lower.tail=FALSE))
97
98 ##     ll <- sum(ll.y.obs) + sum(ll.w0y0) + sum(ll.w1y1)
99
100 ##     # unobserved case; integrate out y
101 ##     ## case y = 1
102 ##     ll.y.1 <- vector(mode='numeric', length=nrow(df))
103 ##     pi.y.1 <- with(df,plogis(B0 + Bxy * x + Bzy*z, log=T))
104 ##     ## P(w=1| y=1)P(y=1) + P(w=0|y=1)P(y=1) = P(w=1,y=1) + P(w=0,y=1)
105 ##     lls.y.1 <- colLogSumExps(rbind(log(ppv) + pi.y.1, log(1-ppv) + pi.y.1))
106     
107 ##     ## case y = 0
108 ##     ll.y.0 <- vector(mode='numeric', length=nrow(df))
109 ##     pi.y.0 <- with(df,plogis(B0 + Bxy * x + Bzy*z, log=T,lower.tail=FALSE))
110
111 ##     ## P(w=1 | y=0)P(y=0) + P(w=0|y=0)P(y=0) = P(w=1,y=0) + P(w=0,y=0)
112 ##     lls.y.0 <- colLogSumExps(rbind(log(npv) + pi.y.0, log(1-npv) + pi.y.0))
113
114 ##     lls <- colLogSumExps(rbind(lls.y.1, lls.y.0))
115 ##     ll <- ll + sum(lls)
116 ##     return(-ll)
117 ##     }    
118 ##     mlefit <- mle2(minuslogl = nll, control=list(maxit=1e6),method='L-BFGS-B',lower=list(B0=-Inf, Bxy=-Inf, Bzy=-Inf, ppv=0.001,npv=0.001),
119 ##                    upper=list(B0=Inf, Bxy=Inf, Bzy=Inf,ppv=0.999,npv=0.999))
120 ##     return(mlefit)
121 ## }
122
123 zhang.mle.dv <- function(df){
124     df.obs <- df[!is.na(y.obs)]
125     df.unobs <- df[is.na(y.obs)]
126
127     fp <- df.obs[(w_pred==1) & (y.obs != w_pred),.N]
128     p <- df.obs[(w_pred==1),.N]
129     fpr <- fp / p
130     fn <- df.obs[(w_pred==0) & (y.obs != w_pred), .N]
131     n <- df.obs[(w_pred==0),.N]
132     fnr <- fn / n
133
134     nll <- function(B0=0, Bxy=0, Bzy=0){
135
136
137         ## observed case
138         ll.y.obs <- vector(mode='numeric', length=nrow(df.obs))
139         ll.y.obs[df.obs$y.obs==1] <- with(df.obs[y.obs==1], plogis(B0 + Bxy * x + Bzy * z,log=T))
140         ll.y.obs[df.obs$y.obs==0] <- with(df.obs[y.obs==0], plogis(B0 + Bxy * x + Bzy * z,log=T,lower.tail=FALSE))
141
142         ll <- sum(ll.y.obs)
143
144         pi.y.1 <- with(df,plogis(B0 + Bxy * x + Bzy*z, log=T))
145         pi.y.0 <- with(df,plogis(B0 + Bxy * x + Bzy*z, log=T,lower.tail=FALSE))
146
147         lls <- with(df.unobs, colLogSumExps(rbind(w_pred * colLogSumExps(rbind(log(fpr), log(1 - fnr - fpr)+pi.y.1)),
148         (1-w_pred) * colLogSumExps(rbind(log(1-fpr), log(1 - fnr - fpr)+pi.y.0)))))
149     
150         ll <- ll + sum(lls)
151         return(-ll)
152     }    
153     mlefit <- mle2(minuslogl = nll, control=list(maxit=1e6),method='L-BFGS-B',lower=c(B0=-Inf, Bxy=-Inf, Bzy=-Inf),
154                    upper=c(B0=Inf, Bxy=Inf, Bzy=Inf))
155     return(mlefit)
156 }
157  
158 ## This uses the likelihood approach from Carroll page 353.
159 ## assumes that we have a good measurement error model
160 my.mle <- function(df){
161     
162     ## liklihood for observed responses
163     nll <- function(B0, Bxy, Bzy, gamma0, gamma_y, gamma_z, gamma_yz){
164         df.obs <- df[!is.na(y.obs)]
165         yobs0 <- df.obs$y==0 
166         yobs1 <- df.obs$y==1
167         p.y.obs <- vector(mode='numeric', length=nrow(df.obs))
168         
169         p.y.obs[yobs1] <- plogis(B0 + Bxy * df.obs[yobs1]$x + Bzy*df.obs[yobs1]$z,log=T)
170         p.y.obs[yobs0] <- plogis(B0 + Bxy * df.obs[yobs0]$x + Bzy*df.obs[yobs0]$z,lower.tail=FALSE,log=T)
171
172         wobs0 <- df.obs$w_pred==0
173         wobs1 <- df.obs$w_pred==1
174         p.w.obs <- vector(mode='numeric', length=nrow(df.obs))
175
176         p.w.obs[wobs1] <- plogis(gamma0 + gamma_y * df.obs[wobs1]$y + gamma_z*df.obs[wobs1]$z + df.obs[wobs1]$z*df.obs[wobs1]$y* gamma_yz, log=T)
177         p.w.obs[wobs0] <- plogis(gamma0 + gamma_y * df.obs[wobs0]$y + gamma_z*df.obs[wobs0]$z + df.obs[wobs0]$z*df.obs[wobs0]$y* gamma_yz, lower.tail=FALSE, log=T)
178         
179         p.obs <- p.w.obs + p.y.obs
180
181         df.unobs <- df[is.na(y.obs)]
182
183         p.unobs.0 <- vector(mode='numeric',length=nrow(df.unobs))
184         p.unobs.1 <- vector(mode='numeric',length=nrow(df.unobs))
185
186         wunobs.0 <- df.unobs$w_pred == 0
187         wunobs.1 <- df.unobs$w_pred == 1
188         
189         p.unobs.0[wunobs.1] <- plogis(B0 + Bxy * df.unobs[wunobs.1]$x + Bzy*df.unobs[wunobs.1]$z, log=T) + plogis(gamma0 + gamma_y + gamma_z*df.unobs[wunobs.1]$z + df.unobs[wunobs.1]$z*gamma_yz, log=T)
190
191         p.unobs.0[wunobs.0] <- plogis(B0 + Bxy * df.unobs[wunobs.0]$x + Bzy*df.unobs[wunobs.0]$z, log=T) + plogis(gamma0 + gamma_y + gamma_z*df.unobs[wunobs.0]$z + df.unobs[wunobs.0]$z*gamma_yz, lower.tail=FALSE, log=T)
192
193         p.unobs.1[wunobs.1] <- plogis(B0 + Bxy * df.unobs[wunobs.1]$x + Bzy*df.unobs[wunobs.1]$z, log=T, lower.tail=FALSE) + plogis(gamma0 + gamma_z*df.unobs[wunobs.1]$z, log=T)
194
195         p.unobs.1[wunobs.0] <- plogis(B0 + Bxy * df.unobs[wunobs.0]$x + Bzy*df.unobs[wunobs.0]$z, log=T, lower.tail=FALSE) + plogis(gamma0 + gamma_z*df.unobs[wunobs.0]$z, lower.tail=FALSE, log=T)
196
197         p.unobs <- colLogSumExps(rbind(p.unobs.1, p.unobs.0))
198
199         p <- c(p.obs, p.unobs)
200
201         return(-1*(sum(p)))
202     }
203
204     mlefit <- mle2(minuslogl = nll, start = list(B0=0, Bxy=0,Bzy=0, gamma0=0, gamma_y=0, gamma_z=0, gamma_yz=0), control=list(maxit=1e6),method='L-BFGS-B')
205
206     return(mlefit)
207 }
208
209 run_simulation_depvar <- function(df, result, outcome_formula=y~x+z, proxy_formula=w_pred~y){
210
211     accuracy <- df[,mean(w_pred==y)]
212     result <- append(result, list(accuracy=accuracy))
213
214     (model.true <- glm(y ~ x + z, data=df,family=binomial(link='logit')))
215     true.ci.Bxy <- confint(model.true)['x',]
216     true.ci.Bzy <- confint(model.true)['z',]
217
218     result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
219                                   Bzy.est.true=coef(model.true)['z'],
220                                   Bxy.ci.upper.true = true.ci.Bxy[2],
221                                   Bxy.ci.lower.true = true.ci.Bxy[1],
222                                   Bzy.ci.upper.true = true.ci.Bzy[2],
223                                   Bzy.ci.lower.true = true.ci.Bzy[1]))
224                                   
225     (model.feasible <- glm(y.obs~x+z,data=df,family=binomial(link='logit')))
226
227     feasible.ci.Bxy <- confint(model.feasible)['x',]
228     result <- append(result, list(Bxy.est.feasible=coef(model.feasible)['x'],
229                                   Bxy.ci.upper.feasible = feasible.ci.Bxy[2],
230                                   Bxy.ci.lower.feasible = feasible.ci.Bxy[1]))
231
232     feasible.ci.Bzy <- confint(model.feasible)['z',]
233     result <- append(result, list(Bzy.est.feasible=coef(model.feasible)['z'],
234                                   Bzy.ci.upper.feasible = feasible.ci.Bzy[2],
235                                   Bzy.ci.lower.feasible = feasible.ci.Bzy[1]))
236
237     (model.naive <- glm(w_pred~x+z, data=df, family=binomial(link='logit')))
238
239     naive.ci.Bxy <- confint(model.naive)['x',]
240     naive.ci.Bzy <- confint(model.naive)['z',]
241
242     result <- append(result, list(Bxy.est.naive=coef(model.naive)['x'],
243                                   Bzy.est.naive=coef(model.naive)['z'],
244                                   Bxy.ci.upper.naive = naive.ci.Bxy[2],
245                                   Bxy.ci.lower.naive = naive.ci.Bxy[1],
246                                   Bzy.ci.upper.naive = naive.ci.Bzy[2],
247                                   Bzy.ci.lower.naive = naive.ci.Bzy[1]))
248
249
250     (model.naive.cont <- lm(w~x+z, data=df))
251     naivecont.ci.Bxy <- confint(model.naive.cont)['x',]
252     naivecont.ci.Bzy <- confint(model.naive.cont)['z',]
253
254     ## my implementation of liklihood based correction
255
256     temp.df <- copy(df)
257     temp.df[,y:=y.obs]
258     mod.caroll.lik <- measerr_mle_dv(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula)
259     fisher.info <- solve(mod.caroll.lik$hessian)
260     coef <- mod.caroll.lik$par
261     ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
262     ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
263     result <- append(result,
264                      list(Bxy.est.mle = coef['x'],
265                           Bxy.ci.upper.mle = ci.upper['x'],
266                           Bxy.ci.lower.mle = ci.lower['x'],
267                           Bzy.est.mle = coef['z'],
268                           Bzy.ci.upper.mle = ci.upper['z'],
269                           Bzy.ci.lower.mle = ci.lower['z']))
270
271
272     ## my implementatoin of liklihood based correction
273     mod.zhang <- zhang.mle.dv(df)
274     coef <- coef(mod.zhang)
275     ci <- confint(mod.zhang,method='quad')
276
277     result <- append(result,
278                      list(Bxy.est.zhang = coef['Bxy'],
279                           Bxy.ci.upper.zhang = ci['Bxy','97.5 %'],
280                           Bxy.ci.lower.zhang = ci['Bxy','2.5 %'],
281                           Bzy.est.zhang = coef['Bzy'],
282                           Bzy.ci.upper.zhang = ci['Bzy','97.5 %'],
283                           Bzy.ci.lower.zhang = ci['Bzy','2.5 %']))
284
285     
286
287     # amelia says use normal distribution for binary variables.
288     tryCatch({
289         amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('y','ystar','w'))
290         mod.amelia.k <- zelig(y.obs~x+z, model='ls', data=amelia.out.k$imputations, cite=FALSE)
291         (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
292         est.x.mi <- coefse['x','Estimate']
293         est.x.se <- coefse['x','Std.Error']
294         result <- append(result,
295                          list(Bxy.est.amelia.full = est.x.mi,
296                               Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
297                               Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se
298                               ))
299
300         est.z.mi <- coefse['z','Estimate']
301         est.z.se <- coefse['z','Std.Error']
302
303         result <- append(result,
304                          list(Bzy.est.amelia.full = est.z.mi,
305                               Bzy.ci.upper.amelia.full = est.z.mi + 1.96 * est.z.se,
306                               Bzy.ci.lower.amelia.full = est.z.mi - 1.96 * est.z.se
307                               ))
308
309     },
310     error = function(e){
311         message("An error occurred:\n",e)
312         result$error <- paste0(result$error,'\n', e)
313     })
314
315
316     return(result)
317
318 }
319
320
321 ## outcome_formula, proxy_formula, and truth_formula are passed to measerr_mle 
322 run_simulation <-  function(df, result, outcome_formula=y~x+z, proxy_formula=NULL, truth_formula=NULL){
323
324     accuracy <- df[,mean(w_pred==x)]
325     result <- append(result, list(accuracy=accuracy))
326
327     (model.true <- lm(y ~ x + z, data=df))
328     true.ci.Bxy <- confint(model.true)['x',]
329     true.ci.Bzy <- confint(model.true)['z',]
330
331     result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
332                                   Bzy.est.true=coef(model.true)['z'],
333                                   Bxy.ci.upper.true = true.ci.Bxy[2],
334                                   Bxy.ci.lower.true = true.ci.Bxy[1],
335                                   Bzy.ci.upper.true = true.ci.Bzy[2],
336                                   Bzy.ci.lower.true = true.ci.Bzy[1]))
337                                   
338     (model.feasible <- lm(y~x.obs+z,data=df))
339
340     feasible.ci.Bxy <- confint(model.feasible)['x.obs',]
341     result <- append(result, list(Bxy.est.feasible=coef(model.feasible)['x.obs'],
342                                   Bxy.ci.upper.feasible = feasible.ci.Bxy[2],
343                                   Bxy.ci.lower.feasible = feasible.ci.Bxy[1]))
344
345     feasible.ci.Bzy <- confint(model.feasible)['z',]
346     result <- append(result, list(Bzy.est.feasible=coef(model.feasible)['z'],
347                                   Bzy.ci.upper.feasible = feasible.ci.Bzy[2],
348                                   Bzy.ci.lower.feasible = feasible.ci.Bzy[1]))
349
350     (model.naive <- lm(y~w_pred+z, data=df))
351     
352     naive.ci.Bxy <- confint(model.naive)['w_pred',]
353     naive.ci.Bzy <- confint(model.naive)['z',]
354
355     result <- append(result, list(Bxy.est.naive=coef(model.naive)['w_pred'],
356                                   Bzy.est.naive=coef(model.naive)['z'],
357                                   Bxy.ci.upper.naive = naive.ci.Bxy[2],
358                                   Bxy.ci.lower.naive = naive.ci.Bxy[1],
359                                   Bzy.ci.upper.naive = naive.ci.Bzy[2],
360                                   Bzy.ci.lower.naive = naive.ci.Bzy[1]))
361                                   
362
363     tryCatch({
364     amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('x','w'))
365     mod.amelia.k <- zelig(y~x.obs+z, model='ls', data=amelia.out.k$imputations, cite=FALSE)
366     (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
367
368     est.x.mi <- coefse['x.obs','Estimate']
369     est.x.se <- coefse['x.obs','Std.Error']
370     result <- append(result,
371                      list(Bxy.est.amelia.full = est.x.mi,
372                           Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
373                           Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se
374                           ))
375
376     est.z.mi <- coefse['z','Estimate']
377     est.z.se <- coefse['z','Std.Error']
378
379     result <- append(result,
380                      list(Bzy.est.amelia.full = est.z.mi,
381                           Bzy.ci.upper.amelia.full = est.z.mi + 1.96 * est.z.se,
382                           Bzy.ci.lower.amelia.full = est.z.mi - 1.96 * est.z.se
383                           ))
384
385     },
386     error = function(e){
387         message("An error occurred:\n",e)
388         result$error <-paste0(result$error,'\n', e)
389     }
390     )
391
392     tryCatch({
393         temp.df <- copy(df)
394         temp.df <- temp.df[,x:=x.obs]
395         mod.caroll.lik <- measerr_mle(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula, truth_formula=truth_formula)
396         fisher.info <- solve(mod.caroll.lik$hessian)
397         coef <- mod.caroll.lik$par
398         ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
399         ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
400         
401         
402         result <- append(result,
403                          list(Bxy.est.mle = coef['x'],
404                               Bxy.ci.upper.mle = ci.upper['x'],
405                               Bxy.ci.lower.mle = ci.lower['x'],
406                               Bzy.est.mle = coef['z'],
407                               Bzy.ci.upper.mle = ci.upper['z'],
408                               Bzy.ci.lower.mle = ci.lower['z']))
409     },
410
411     error = function(e){
412         message("An error occurred:\n",e)
413         result$error <- paste0(result$error,'\n', e)
414     })
415
416     tryCatch({
417
418         mod.zhang.lik <- zhang.mle.iv(df)
419         coef <- coef(mod.zhang.lik)
420         ci <- confint(mod.zhang.lik,method='quad')
421         result <- append(result,
422                          list(Bxy.est.zhang = coef['Bxy'],
423                               Bxy.ci.upper.zhang = ci['Bxy','97.5 %'],
424                               Bxy.ci.lower.zhang = ci['Bxy','2.5 %'],
425                               Bzy.est.zhang = coef['Bzy'],
426                               Bzy.ci.upper.zhang = ci['Bzy','97.5 %'],
427                               Bzy.ci.lower.zhang = ci['Bzy','2.5 %']))
428     },
429
430     error = function(e){
431         message("An error occurred:\n",e)
432         result$error <- paste0(result$error,'\n', e)
433     })
434
435     ## What if we can't observe k -- most realistic scenario. We can't include all the ML features in a model.
436     ## amelia.out.nok <- amelia(df, m=200, p2s=0, idvars=c("x","w_pred"), noms=noms)
437     ## mod.amelia.nok <- zelig(y~x.obs+g, model='ls', data=amelia.out.nok$imputations, cite=FALSE)
438     ## (coefse <- combine_coef_se(mod.amelia.nok, messages=FALSE))
439
440     ## est.x.mi <- coefse['x.obs','Estimate']
441     ## est.x.se <- coefse['x.obs','Std.Error']
442     ## result <- append(result,
443     ##                  list(Bxy.est.amelia.nok = est.x.mi,
444     ##                       Bxy.ci.upper.amelia.nok = est.x.mi + 1.96 * est.x.se,
445     ##                       Bxy.ci.lower.amelia.nok = est.x.mi - 1.96 * est.x.se
446     ##                       ))
447
448     ## est.g.mi <- coefse['g','Estimate']
449     ## est.g.se <- coefse['g','Std.Error']
450
451     ## result <- append(result,
452     ##                  list(Bgy.est.amelia.nok = est.g.mi,
453     ##                       Bgy.ci.upper.amelia.nok = est.g.mi + 1.96 * est.g.se,
454     ##                       Bgy.ci.lower.amelia.nok = est.g.mi - 1.96 * est.g.se
455     ##                       ))
456
457     N <- nrow(df)
458     m <- nrow(df[!is.na(x.obs)])
459     p <- v <- train <- rep(0,N)
460     M <- m
461     p[(M+1):(N)] <- 1
462     v[1:(M)] <- 1
463     df <- df[order(x.obs)]
464     y <- df[,y]
465     x <- df[,x.obs]
466     z <- df[,z]
467     w <- df[,w_pred]
468     # gmm gets pretty close
469     (gmm.res <- predicted_covariates(y, x, z, w, v, train, p, max_iter=100, verbose=TRUE))
470
471     result <- append(result,
472                      list(Bxy.est.gmm = gmm.res$beta[1,1],
473                           Bxy.ci.upper.gmm = gmm.res$confint[1,2],
474                           Bxy.ci.lower.gmm = gmm.res$confint[1,1],
475                           gmm.ER_pval = gmm.res$ER_pval
476                           ))
477
478     result <- append(result,
479                      list(Bzy.est.gmm = gmm.res$beta[2,1],
480                           Bzy.ci.upper.gmm = gmm.res$confint[2,2],
481                           Bzy.ci.lower.gmm = gmm.res$confint[2,1]))
482
483
484     tryCatch({
485     mod.calibrated.mle <- mecor(y ~ MeasError(w_pred, reference = x.obs) + z, df, B=400, method='efficient')
486     (mod.calibrated.mle)
487     (mecor.ci <- summary(mod.calibrated.mle)$c$ci['x.obs',])
488     result <- append(result, list(
489                                  Bxy.est.mecor = mecor.ci['Estimate'],
490                                  Bxy.ci.upper.mecor = mecor.ci['UCI'],
491                                  Bxy.ci.lower.mecor = mecor.ci['LCI'])
492                      )
493
494     (mecor.ci <- summary(mod.calibrated.mle)$c$ci['z',])
495
496     result <- append(result, list(
497                                  Bzy.est.mecor = mecor.ci['Estimate'],
498                                  Bzy.ci.upper.mecor = mecor.ci['UCI'],
499                                  Bzy.ci.lower.mecor = mecor.ci['LCI'])
500                      )
501     },
502     error = function(e){
503         message("An error occurred:\n",e)
504         result$error <- paste0(result$error, '\n', e)
505     }
506     )
507 ##    clean up memory
508 ##    rm(list=c("df","y","x","g","w","v","train","p","amelia.out.k","amelia.out.nok", "mod.calibrated.mle","gmm.res","mod.amelia.k","mod.amelia.nok", "model.true","model.naive","model.feasible"))
509     
510 ##    gc()
511     return(result)
512 }

Community Data Science Collective || Want to submit a patch?