22 0.5*(dat$x1 + sapply(dat$sdx, function(sd) rnorm(1,0,sd)))
 
  26 conditional_effects(fit2,resp='y')
 
  27 plot(conditional_effects(fit2,resp='y'))
 
  42 summary(brms.corrected.logit)
 
  43 summary(brms.corrected.logit)
 
  53 true.model$null.deviance
 
  59 setwd("../../partitioning_reddit")
 
  63 install.packages("filelock")
 
  68 outcome_formula <- y ~ x + z
 
  69 outcome_family=gaussian()
 
  70 proxy_formula <- w_pred ~ x
 
  71 truth_formula <- x ~ z
 
  75 rater_formula <- x.obs ~ x
 
  77 rater.modle.matrix.obs.x0
 
  78 rater.model.matrix.obs.x0
 
  79 names(rater.model.matrix.obs.x0)
 
  80 head(rater.model.matrix.obs.x0)
 
  84 rater.params %*% t(rater.model.matrix.x.obs.0[df.obs$xobs.0==1])
 
  87 ll.x.obs.0[df.obs$x.obs.0==1]
 
  88 rater.model.matrix.x.obs.0[df.obs$x.obs.0==1,]
 
  90 n.rater.model.covars <- dim(rater.model.matrix.x.obs.0)[2]
 
  91         rater.params <- params[param.idx:n.rater.model.covars]
 
  93         ll.x.obs.0[df.obs$x.obs.0==1] <- plogis(rater.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.0==1,]), log=TRUE)
 
  94 t(rater.model.matrix.x.obs.0[df.obs$x.obs.0==1,]
 
  96 dimt(rater.model.matrix.x.obs.0[df.obs$x.obs.0==1,])
 
  97 dim(t(rater.model.matrix.x.obs.0[df.obs$x.obs.0==1,]))
 
  98 dim(ll.x.obs.0[df.obs$x.obs.0==1])
 
 108 outcome_formula <- y ~ x + z
 
 109 proxy_formula <- w_pred ~ x + z + y
 
 110 truth_formula <- x ~ z
 
 112 eyboardio Model 01 - Kaleidoscope locally built
 
 113 df <- df.triple.proxy.mle
 
 114 outcome_family='gaussian'
 
 115 outcome_family=gaussian()
 
 116 proxy_formulas=list(proxy_formula,x.obs.0~x, x.obs.1~x)
 
 118 proxy_familites <- rep(binomial(link='logit'),3)
 
 119 proxy_families = rep(binomial(link='logit'),3)
 
 121 proxy_families = list(binomial(link='logit'),binomial(link='logit'),binomial(link='logit'))
 
 132 coder.formulas <- c(x.obs.0 ~ x, x.obs.1 ~x)
 
 135 depvar(outcome_formula
 
 137 outcome_formula$terms
 
 138 terms(outcome_formula)
 
 144 df <- df.triple.proxy
 
 145 outcome_family <- binomial(link='logit')
 
 146 outcome_formula <- y ~x+z
 
 147 proxy_formula <- w_pred ~ y
 
 148 coder_formulas=list(y.obs.1~y,y.obs.2~y); proxy_formula=w_pred~y; proxy_family=binomial(link='logit'))
 
 149 coder_formulas=list(y.obs.1~y,y.obs.2~y); proxy_formula=w_pred~y; proxy_family=binomial(link='logit')
 
 150 coder_formulas=list(y.obs.0~y,y.obs.1~y)