5 ## df: dataframe to model
6 ## outcome_formula: formula for y | x, z
7 ## outcome_family: family for y | x, z
8 ## proxy_formula: formula for w | x, z, y
9 ## proxy_family: family for w | x, z, y
10 ## truth_formula: formula for x | z
11 ## truth_family: family for x | z
13 ### ideal formulas for example 1
14 # test.fit.1 <- measerr_mle(df, y ~ x + z, gaussian(), w_pred ~ x, binomial(link='logit'), x ~ z)
16 ### ideal formulas for example 2
17 # test.fit.2 <- measerr_mle(df, y ~ x + z, gaussian(), w_pred ~ x + z + y + y:x, binomial(link='logit'), x ~ z)
18 likelihood.logistic <- function(model.params, outcome, model.matrix){
19 ll <- vector(mode='numeric', length=length(outcome))
20 ll[outcome == 1] <- plogis(model.params %*% t(model.matrix[outcome==1,]), log=TRUE)
21 ll[outcome == 0] <- plogis(model.params %*% t(model.matrix[outcome==0,]), log=TRUE, lower.tail=FALSE)
25 ## outcome_formula <- y ~ x + z; proxy_formula <- w_pred ~ y + x + z + x:z + x:y + z:y
26 measerr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='logit'), proxy_formula, proxy_family=binomial(link='logit'),maxit=1e6, method='optim',optim_method='L-BFGS-B'){
27 df.obs <- model.frame(outcome_formula, df)
28 proxy.model.matrix <- model.matrix(proxy_formula, df)
29 proxy.variable <- all.vars(proxy_formula)[1]
31 df.proxy.obs <- model.frame(proxy_formula,df)
32 proxy.obs <- with(df.proxy.obs, eval(parse(text=proxy.variable)))
34 response.var <- all.vars(outcome_formula)[1]
35 y.obs <- with(df.obs,eval(parse(text=response.var)))
36 outcome.model.matrix <- model.matrix(outcome_formula, df.obs)
38 df.unobs <- df[is.na(df[[response.var]])]
39 df.unobs.y1 <- copy(df.unobs)
40 df.unobs.y1[[response.var]] <- 1
41 df.unobs.y0 <- copy(df.unobs)
42 df.unobs.y0[[response.var]] <- 0
44 outcome.model.matrix.y1 <- model.matrix(outcome_formula, df.unobs.y1)
45 proxy.model.matrix.y1 <- model.matrix(proxy_formula, df.unobs.y1)
46 proxy.model.matrix.y0 <- model.matrix(proxy_formula, df.unobs.y0)
47 proxy.unobs <- with(df.unobs, eval(parse(text=proxy.variable)))
49 nll <- function(params){
52 n.outcome.model.covars <- dim(outcome.model.matrix)[2]
53 outcome.params <- params[param.idx:n.outcome.model.covars]
54 param.idx <- param.idx + n.outcome.model.covars
56 if((outcome_family$family == "binomial") & (outcome_family$link == 'logit')){
57 ll.y.obs <- vector(mode='numeric', length=length(y.obs))
58 ll.y.obs[y.obs==1] <- plogis(outcome.params %*% t(outcome.model.matrix[y.obs==1,]),log=TRUE)
59 ll.y.obs[y.obs==0] <- plogis(outcome.params %*% t(outcome.model.matrix[y.obs==0,]),log=TRUE,lower.tail=FALSE)
62 n.proxy.model.covars <- dim(proxy.model.matrix)[2]
63 proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)]
64 param.idx <- param.idx + n.proxy.model.covars
66 if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
67 ll.w.obs <- vector(mode='numeric',length=dim(proxy.model.matrix)[1])
68 ll.w.obs[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==1,]),log=TRUE)
69 ll.w.obs[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==0,]),log=TRUE, lower.tail=FALSE)
72 ll.obs <- sum(ll.y.obs + ll.w.obs)
76 if((outcome_family$family == "binomial") & (outcome_family$link == 'logit')){
77 ll.y.unobs.1 <- vector(mode='numeric', length=dim(outcome.model.matrix.y1)[1])
78 ll.y.unobs.0 <- vector(mode='numeric', length=dim(outcome.model.matrix.y1)[1])
79 ll.y.unobs.1 <- plogis(outcome.params %*% t(outcome.model.matrix.y1),log=TRUE)
80 ll.y.unobs.0 <- plogis(outcome.params %*% t(outcome.model.matrix.y1),log=TRUE,lower.tail=FALSE)
83 if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
84 ll.w.unobs.1 <- vector(mode='numeric',length=dim(proxy.model.matrix.y1)[1])
85 ll.w.unobs.0 <- vector(mode='numeric',length=dim(proxy.model.matrix.y0)[1])
86 ll.w.unobs.1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.y1[proxy.unobs==1,]),log=TRUE)
87 ll.w.unobs.1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.y1[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE)
89 ll.w.unobs.0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.y0[proxy.unobs==1,]),log=TRUE)
90 ll.w.unobs.0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.y0[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE)
93 ll.unobs.1 <- ll.y.unobs.1 + ll.w.unobs.1
94 ll.unobs.0 <- ll.y.unobs.0 + ll.w.unobs.0
95 ll.unobs <- sum(colLogSumExps(rbind(ll.unobs.1,ll.unobs.0)))
96 ll <- ll.unobs + ll.obs
100 params <- colnames(model.matrix(outcome_formula,df))
101 lower <- rep(-Inf, length(params))
102 proxy.params <- colnames(model.matrix(proxy_formula, df))
103 params <- c(params, paste0('proxy_',proxy.params))
104 lower <- c(lower, rep(-Inf, length(proxy.params)))
105 start <- rep(0.1,length(params))
106 names(start) <- params
109 fit <- optim(start, fn = nll, lower=lower, method=optim_method, hessian=TRUE, control=list(maxit=maxit))
111 quoted.names <- gsub("[\\(\\)]",'',names(start))
113 text <- paste("function(", paste0(quoted.names,'=',start,collapse=','),"){params<-c(",paste0(quoted.names,collapse=','),");return(nll(params))}")
115 measerr_mle_nll <- eval(parse(text=text))
116 names(start) <- quoted.names
117 names(lower) <- quoted.names
118 fit <- mle2(minuslogl=measerr_mle_nll, start=start, lower=lower, parnames=params,control=list(maxit=maxit),method=optim_method)
124 measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit'),method='optim', maxit=1e6, optim_method='L-BFGS-B'){
126 df.obs <- model.frame(outcome_formula, df)
127 response.var <- all.vars(outcome_formula)[1]
128 proxy.variable <- all.vars(proxy_formula)[1]
129 truth.variable <- all.vars(truth_formula)[1]
130 outcome.model.matrix <- model.matrix(outcome_formula, df)
131 proxy.model.matrix <- model.matrix(proxy_formula, df)
132 y.obs <- with(df.obs,eval(parse(text=response.var)))
134 df.proxy.obs <- model.frame(proxy_formula,df)
135 proxy.obs <- with(df.proxy.obs, eval(parse(text=proxy.variable)))
136 n.proxy.model.covars <- dim(proxy.model.matrix)[2]
138 df.truth.obs <- model.frame(truth_formula, df)
139 truth.obs <- with(df.truth.obs, eval(parse(text=truth.variable)))
140 truth.model.matrix <- model.matrix(truth_formula,df.truth.obs)
141 n.truth.model.covars <- dim(truth.model.matrix)[2]
143 df.unobs <- df[is.na(eval(parse(text=truth.variable)))]
144 df.unobs.x1 <- copy(df.unobs)
145 df.unobs.x1[,truth.variable] <- 1
146 df.unobs.x0 <- copy(df.unobs)
147 df.unobs.x0[,truth.variable] <- 0
148 outcome.unobs <- with(df.unobs, eval(parse(text=response.var)))
150 outcome.model.matrix.x0 <- model.matrix(outcome_formula, df.unobs.x0)
151 outcome.model.matrix.x1 <- model.matrix(outcome_formula, df.unobs.x1)
153 proxy.model.matrix.x0 <- model.matrix(proxy_formula, df.unobs.x0)
154 proxy.model.matrix.x1 <- model.matrix(proxy_formula, df.unobs.x1)
155 proxy.unobs <- df.unobs[[proxy.variable]]
157 truth.model.matrix.unobs <- model.matrix(truth_formula, df.unobs.x0)
159 measerr_mle_nll <- function(params){
161 n.outcome.model.covars <- dim(outcome.model.matrix)[2]
162 outcome.params <- params[param.idx:n.outcome.model.covars]
163 param.idx <- param.idx + n.outcome.model.covars
165 ## likelihood for the fully observed data
166 if(outcome_family$family == "gaussian"){
167 sigma.y <- params[param.idx]
168 param.idx <- param.idx + 1
169 # outcome_formula likelihood using linear regression
170 ll.y.obs <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix),sd=sigma.y, log=TRUE)
171 } else if( (outcome_family$family == "binomial") & (outcome_family$link == "logit") )
172 ll.y.obs <- likelihood.logistic(outcome.params, y.obs, outcome.model.matrix)
175 proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)]
176 param.idx <- param.idx + n.proxy.model.covars
178 if( (proxy_family$family=="binomial") & (proxy_family$link=='logit'))
179 ll.w.obs <- likelihood.logistic(proxy.params, proxy.obs, proxy.model.matrix)
181 truth.params <- params[param.idx:(n.truth.model.covars + param.idx - 1)]
183 if( (truth_family$family=="binomial") & (truth_family$link=='logit'))
184 ll.x.obs <- likelihood.logistic(truth.params, truth.obs, truth.model.matrix)
186 # add the three likelihoods
187 ll.obs <- sum(ll.y.obs + ll.w.obs + ll.x.obs)
189 ## likelihood for the predicted data
190 ## integrate out the "truth" variable.
192 if(truth_family$family=='binomial'){
193 if(outcome_family$family=="gaussian"){
194 # likelihood of outcome
195 ll.y.x0 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x0), sd=sigma.y, log=TRUE)
196 ll.y.x1 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x1), sd=sigma.y, log=TRUE)
197 } else if( (outcome_family$family == "binomial") & (outcome_family$link == "logit") ){
198 ll.y.x1 <- likelihood.logistic(outcome.params, outcome.unobs, outcome.model.matrix.x1)
199 ll.y.x0 <- likelihood.logistic(outcome.params, outcome.unobs, outcome.model.matrix.x0)
202 if( (proxy_family$family=='binomial') & (proxy_family$link=='logit')){
204 ll.w.x0 <- likelihood.logistic(proxy.params, proxy.unobs, proxy.model.matrix.x0)
205 ll.w.x1 <- likelihood.logistic(proxy.params, proxy.unobs, proxy.model.matrix.x1)
209 if(truth_family$link=='logit'){
210 # likelihood of truth
211 ll.x.x1 <- plogis(truth.params %*% t(truth.model.matrix.unobs), log=TRUE)
212 ll.x.x0 <- plogis(truth.params %*% t(truth.model.matrix.unobs), log=TRUE, lower.tail=FALSE)
216 ll.x0 <- ll.y.x0 + ll.w.x0 + ll.x.x0
217 ll.x1 <- ll.y.x1 + ll.w.x1 + ll.x.x1
218 ll.unobs <- sum(colLogSumExps(rbind(ll.x0, ll.x1)))
219 return(-(ll.unobs + ll.obs))
222 outcome.params <- colnames(model.matrix(outcome_formula,df))
223 lower <- rep(-Inf, length(outcome.params))
225 if(outcome_family$family=='gaussian'){
226 params <- c(outcome.params, 'sigma_y')
227 lower <- c(lower, 0.00001)
229 params <- outcome.params
232 proxy.params <- colnames(model.matrix(proxy_formula, df))
233 params <- c(params, paste0('proxy_',proxy.params))
234 lower <- c(lower, rep(-Inf, length(proxy.params)))
236 truth.params <- colnames(model.matrix(truth_formula, df))
237 params <- c(params, paste0('truth_', truth.params))
238 lower <- c(lower, rep(-Inf, length(truth.params)))
239 start <- rep(0.1,length(params))
240 names(start) <- params
243 fit <- optim(start, fn = measerr_mle_nll, lower=lower, method=optim_method, hessian=TRUE, control=list(maxit=maxit))
244 } else { # method='mle2'
246 quoted.names <- gsub("[\\(\\)]",'',names(start))
248 text <- paste("function(", paste0(quoted.names,'=',start,collapse=','),"){params<-c(",paste0(quoted.names,collapse=','),");return(measerr_mle_nll(params))}")
250 measerr_mle_nll_mle <- eval(parse(text=text))
251 names(start) <- quoted.names
252 names(lower) <- quoted.names
253 fit <- mle2(minuslogl=measerr_mle_nll_mle, start=start, lower=lower, parnames=params,control=list(maxit=maxit),method=optim_method)
259 ## Experimental, but probably works.
260 measerr_irr_mle <- function(df, outcome_formula, outcome_family=gaussian(), coder_formulas=list(x.obs.0~x, x.obs.1~x), proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit'),method='optim'){
262 ### in this scenario, the ground truth also has measurement error, but we have repeated measures for it.
263 # this time we never get to observe the true X
264 outcome.model.matrix <- model.matrix(outcome_formula, df)
265 proxy.model.matrix <- model.matrix(proxy_formula, df)
266 response.var <- all.vars(outcome_formula)[1]
267 proxy.var <- all.vars(proxy_formula)[1]
268 param.var <- all.vars(truth_formula)[1]
269 truth.var<- all.vars(truth_formula)[1]
270 y <- with(df,eval(parse(text=response.var)))
272 nll <- function(params){
274 n.outcome.model.covars <- dim(outcome.model.matrix)[2]
275 outcome.params <- params[param.idx:n.outcome.model.covars]
276 param.idx <- param.idx + n.outcome.model.covars
279 if(outcome_family$family == "gaussian"){
280 sigma.y <- params[param.idx]
281 param.idx <- param.idx + 1
285 n.proxy.model.covars <- dim(proxy.model.matrix)[2]
286 proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)]
287 param.idx <- param.idx + n.proxy.model.covars
291 if((truth_family$family == "binomial")
292 & (truth_family$link=='logit')){
293 integrate.grid <- expand.grid(replicate(1 + length(coder_formulas), c(0,1), simplify=FALSE))
294 ll.parts <- matrix(nrow=nrow(df),ncol=nrow(integrate.grid))
295 for(i in 1:nrow(integrate.grid)){
296 # setup the dataframe for this row
297 row <- integrate.grid[i,]
299 df.temp[[param.var]] <- row[[1]]
301 for(coder_formula in coder_formulas){
302 coder.var <- all.vars(coder_formula)[1]
303 df.temp[[coder.var]] <- row[[ci]]
307 outcome.model.matrix <- model.matrix(outcome_formula, df.temp)
308 if(outcome_family$family == "gaussian"){
309 ll.y <- dnorm(y, outcome.params %*% t(outcome.model.matrix), sd=sigma.y, log=TRUE)
312 if(proxy_family$family=="binomial" & (proxy_family$link=='logit')){
313 proxy.model.matrix <- model.matrix(proxy_formula, df.temp)
314 ll.w <- vector(mode='numeric', length=dim(proxy.model.matrix)[1])
315 proxyvar <- with(df.temp,eval(parse(text=proxy.var)))
316 ll.w[proxyvar==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxyvar==1,]),log=TRUE)
317 ll.w[proxyvar==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxyvar==0,]),log=TRUE,lower.tail=FALSE)
320 ## probability of the coded variables
321 coder.lls <- matrix(nrow=nrow(df.temp),ncol=length(coder_formulas))
323 for(coder_formula in coder_formulas){
324 coder.model.matrix <- model.matrix(coder_formula, df.temp)
325 n.coder.model.covars <- dim(coder.model.matrix)[2]
326 coder.params <- params[param.idx:(n.coder.model.covars + param.idx - 1)]
327 param.idx <- param.idx + n.coder.model.covars
328 coder.var <- all.vars(coder_formula)[1]
329 x.obs <- with(df.temp, eval(parse(text=coder.var)))
330 true.codervar <- df[[all.vars(coder_formula)[1]]]
332 ll.coder <- vector(mode='numeric', length=dim(coder.model.matrix)[1])
333 ll.coder[x.obs==1] <- plogis(coder.params %*% t(coder.model.matrix[x.obs==1,]),log=TRUE)
334 ll.coder[x.obs==0] <- plogis(coder.params %*% t(coder.model.matrix[x.obs==0,]),log=TRUE,lower.tail=FALSE)
336 # don't count when we know the observed value, unless we're accounting for observed value
337 ll.coder[(!is.na(true.codervar)) & (true.codervar != x.obs)] <- NA
338 coder.lls[,ci] <- ll.coder
342 truth.model.matrix <- model.matrix(truth_formula, df.temp)
343 n.truth.model.covars <- dim(truth.model.matrix)[2]
344 truth.params <- params[param.idx:(n.truth.model.covars + param.idx - 1)]
346 for(coder_formula in coder_formulas){
347 coder.model.matrix <- model.matrix(coder_formula, df.temp)
348 n.coder.model.covars <- dim(coder.model.matrix)[2]
349 param.idx <- param.idx - n.coder.model.covars
352 x <- with(df.temp, eval(parse(text=truth.var)))
353 ll.truth <- vector(mode='numeric', length=dim(truth.model.matrix)[1])
354 ll.truth[x==1] <- plogis(truth.params %*% t(truth.model.matrix[x==1,]), log=TRUE)
355 ll.truth[x==0] <- plogis(truth.params %*% t(truth.model.matrix[x==0,]), log=TRUE, lower.tail=FALSE)
357 true.truthvar <- df[[all.vars(truth_formula)[1]]]
359 if(!is.null(true.truthvar)){
360 # ll.truth[(!is.na(true.truthvar)) & (true.truthvar != truthvar)] <- -Inf
361 # ll.truth[(!is.na(true.truthvar)) & (true.truthvar == truthvar)] <- 0
363 ll.parts[,i] <- ll.y + ll.w + apply(coder.lls,1,sum) + ll.truth
367 lls <- rowLogSumExps(ll.parts,na.rm=TRUE)
369 ## likelihood of observed data
370 target <- -1 * sum(lls)
375 outcome.params <- colnames(model.matrix(outcome_formula,df))
376 lower <- rep(-Inf, length(outcome.params))
378 if(outcome_family$family=='gaussian'){
379 params <- c(outcome.params, 'sigma_y')
380 lower <- c(lower, 0.00001)
382 params <- outcome.params
385 proxy.params <- colnames(model.matrix(proxy_formula, df))
386 params <- c(params, paste0('proxy_',proxy.params))
387 positive.params <- paste0('proxy_',truth.var)
388 lower <- c(lower, rep(-Inf, length(proxy.params)))
389 names(lower) <- params
390 lower[positive.params] <- 0.01
393 for(coder_formula in coder_formulas){
394 coder.params <- colnames(model.matrix(coder_formula,df))
395 params <- c(params, paste0('coder_',ci,coder.params))
396 positive.params <- paste0('coder_', ci, truth.var)
398 lower <- c(lower, rep(-Inf, length(coder.params)))
399 names(lower) <- params
400 lower[positive.params] <- 0.01
403 truth.params <- colnames(model.matrix(truth_formula, df))
404 params <- c(params, paste0('truth_', truth.params))
405 lower <- c(lower, rep(-Inf, length(truth.params)))
406 start <- rep(0.1,length(params))
407 names(start) <- params
408 names(lower) <- params
412 fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6))
415 quoted.names <- gsub("[\\(\\)]",'',names(start))
417 text <- paste("function(", paste0(quoted.names,'=',start,collapse=','),"){params<-c(",paste0(quoted.names,collapse=','),");return(nll(params))}")
419 measerr_mle_nll <- eval(parse(text=text))
420 names(start) <- quoted.names
421 names(lower) <- quoted.names
422 fit <- mle2(minuslogl=measerr_mle_nll, start=start, lower=lower, method='L-BFGS-B',control=list(maxit=1e6))
428 ## Experimental, and does not work.
429 measerr_irr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='logit'), coder_formulas=list(y.obs.0~y+w_pred+y.obs.1,y.obs.1~y+w_pred+y.obs.0), proxy_formula=w_pred~y, proxy_family=binomial(link='logit'),method='optim'){
430 integrate.grid <- expand.grid(replicate(1 + length(coder_formulas), c(0,1), simplify=FALSE))
431 # print(integrate.grid)
434 outcome.model.matrix <- model.matrix(outcome_formula, df)
435 n.outcome.model.covars <- dim(outcome.model.matrix)[2]
438 ### in this scenario, the ground truth also has measurement error, but we have repeated measures for it.
439 # this time we never get to observe the true X
440 nll <- function(params){
442 outcome.params <- params[param.idx:n.outcome.model.covars]
443 param.idx <- param.idx + n.outcome.model.covars
444 proxy.model.matrix <- model.matrix(proxy_formula, df)
445 n.proxy.model.covars <- dim(proxy.model.matrix)[2]
446 response.var <- all.vars(outcome_formula)[1]
448 if(outcome_family$family == "gaussian"){
449 sigma.y <- params[param.idx]
450 param.idx <- param.idx + 1
453 proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)]
454 param.idx <- param.idx + n.proxy.model.covars
458 if((outcome_family$family == "binomial")
459 & (outcome_family$link=='logit')){
460 ll.parts <- matrix(nrow=nrow(df),ncol=nrow(integrate.grid))
461 for(i in 1:nrow(integrate.grid)){
462 # setup the dataframe for this row
463 row <- integrate.grid[i,]
465 df.temp[[response.var]] <- row[[1]]
467 for(coder_formula in coder_formulas){
468 codervar <- all.vars(coder_formula)[1]
469 df.temp[[codervar]] <- row[[ci]]
473 outcome.model.matrix <- model.matrix(outcome_formula, df.temp)
474 if(outcome_family$family == "gaussian"){
475 ll.y <- dnorm(df.temp[[response.var]], outcome.params %*% t(outcome.model.matrix), sd=sigma.y, log=T)
478 if(outcome_family$family == "binomial" & (outcome_family$link=='logit')){
479 ll.y <- vector(mode='numeric',length=nrow(df.temp))
480 ll.y[df.temp[[response.var]]==1] <- plogis( outcome.params %*% t(outcome.model.matrix), log=TRUE)
481 ll.y[df.temp[[response.var]]==0] <- plogis( outcome.params %*% t(outcome.model.matrix), log=TRUE,lower.tail=FALSE)
484 if(proxy_family$family=="binomial" & (proxy_family$link=='logit')){
485 proxy.model.matrix <- model.matrix(proxy_formula, df.temp)
486 ll.w <- vector(mode='numeric', length=dim(proxy.model.matrix)[1])
487 proxyvar <- with(df.temp,eval(parse(text=all.vars(proxy_formula)[1])))
488 ll.w[proxyvar==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxyvar==1,]),log=TRUE)
489 ll.w[proxyvar==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxyvar==0,]),log=TRUE,lower.tail=FALSE)
492 ## probability of the coded variables
493 coder.lls <- matrix(nrow=nrow(df.temp),ncol=length(coder_formulas))
495 for(coder_formula in coder_formulas){
496 coder.model.matrix <- model.matrix(coder_formula, df.temp)
497 n.coder.model.covars <- dim(coder.model.matrix)[2]
498 coder.params <- params[param.idx:(n.coder.model.covars + param.idx - 1)]
499 param.idx <- param.idx + n.coder.model.covars
500 codervar <- with(df.temp, eval(parse(text=all.vars(coder_formula)[1])))
501 true.codervar <- df[[all.vars(coder_formula)[1]]]
503 ll.coder <- vector(mode='numeric', length=dim(coder.model.matrix)[1])
504 ll.coder[codervar==1] <- plogis(coder.params %*% t(coder.model.matrix[codervar==1,]),log=TRUE)
505 ll.coder[codervar==0] <- plogis(coder.params %*% t(coder.model.matrix[codervar==0,]),log=TRUE,lower.tail=FALSE)
507 # don't count when we know the observed value, unless we're accounting for observed value
508 ll.coder[(!is.na(true.codervar)) & (true.codervar != codervar)] <- NA
509 coder.lls[,ci] <- ll.coder
513 for(coder_formula in coder_formulas){
514 coder.model.matrix <- model.matrix(coder_formula, df.temp)
515 n.coder.model.covars <- dim(coder.model.matrix)[2]
516 param.idx <- param.idx - n.coder.model.covars
519 ll.parts[,i] <- ll.y + ll.w + apply(coder.lls,1,function(x) sum(x))
523 lls <- rowLogSumExps(ll.parts,na.rm=TRUE)
525 ## likelihood of observed data
526 target <- -1 * sum(lls)
533 outcome.params <- colnames(model.matrix(outcome_formula,df))
534 response.var <- all.vars(outcome_formula)[1]
535 lower <- rep(-Inf, length(outcome.params))
537 if(outcome_family$family=='gaussian'){
538 params <- c(outcome.params, 'sigma_y')
539 lower <- c(lower, 0.00001)
541 params <- outcome.params
544 ## constrain the model of the coder and proxy vars
545 ## this is to ensure identifiability
546 ## it is a safe assumption because the coders aren't hostile (wrong more often than right)
547 ## so we can assume that y ~Bw, B is positive
548 proxy.params <- colnames(model.matrix(proxy_formula, df))
549 positive.params <- paste0('proxy_',response.var)
550 params <- c(params, paste0('proxy_',proxy.params))
551 lower <- c(lower, rep(-Inf, length(proxy.params)))
552 names(lower) <- params
553 lower[positive.params] <- 0.001
556 for(coder_formula in coder_formulas){
557 coder.params <- colnames(model.matrix(coder_formula,df))
558 latent.coder.params <- coder.params %in% response.var
559 params <- c(params, paste0('coder_',ci,coder.params))
560 positive.params <- paste0('coder_',ci,response.var)
562 lower <- c(lower, rep(-Inf, length(coder.params)))
563 names(lower) <-params
564 lower[positive.params] <- 0.001
567 ## init by using the "loco model"
569 temp.df <- temp.df[y.obs.1 == y.obs.0, y:=y.obs.1]
570 loco.model <- glm(outcome_formula, temp.df, family=outcome_family)
572 start <- rep(1,length(params))
573 names(start) <- params
574 start[names(coef(loco.model))] <- coef(loco.model)
575 names(lower) <- params
578 fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE,control=list(maxit=1e6))
581 quoted.names <- gsub("[\\(\\)]",'',names(start))
583 text <- paste("function(", paste0(quoted.names,'=',start,collapse=','),"){params<-c(",paste0(quoted.names,collapse=','),");return(nll(params))}")
585 measerr_mle_nll <- eval(parse(text=text))
586 names(start) <- quoted.names
587 names(lower) <- quoted.names
588 fit <- mle2(minuslogl=measerr_mle_nll, start=start, lower=lower, parnames=params,control=list(maxit=1e6),method='L-BFGS-B')