1 source('load_perspective_data.R')
2 source("../simulations/measerr_methods.R")
3 source("../simulations/RemembR/R/RemembeR.R")
5 change.remember.file("dv_perspective_example.RDS")
6 remember(accuracies, "civil_comments_accuracies")
7 remember(f1s, "civil_comments_f1s")
8 remember(positive_cases, "civil_comments_positive_cases")
9 remember(proportions_cases, "civil_comments_proportions_cases")
10 remember(cortab, "civil_comments_cortab")
11 remember(nrow(df), 'n.annotated.comments')
15 ## another simple enough example: is P(toxic | funny and white) > P(toxic | funny nand white)? Or, are funny comments more toxic when people disclose that they are white?
17 compare_dv_models <-function(pred_formula, outcome_formula, proxy_formula, df, sample.prop, sample.size, remember_prefix){
18 if(is.null(sample.prop)){
19 sample.prop <- sample.size / nrow(df)
21 if(is.null(sample.size)){
22 sample.size <- nrow(df) * sample.prop
25 pred_model <- glm(pred_formula, df, family=binomial(link='logit'))
27 remember(sample.size, paste0(remember_prefix, "sample.size"))
28 remember(sample.prop, paste0(remember_prefix, "sample.prop"))
29 remember(pred_formula, paste0(remember_prefix, "pred_formula"))
30 remember(outcome_formula, paste0(remember_prefix, 'outcome_formula'))
31 remember(proxy_formula, paste0(remember_prefix, 'proxy_formula'))
33 remember(coef(pred_model), paste0(remember_prefix, "coef_pred_model"))
34 remember(diag(vcov((pred_model))), paste0(remember_prefix, "se_pred_model"))
36 coder_model <- glm(outcome_formula, df, family=binomial(link='logit'))
37 remember(coef(coder_model), paste0(remember_prefix, "coef_coder_model"))
38 remember(diag(vcov((coder_model))), paste0(remember_prefix, "se_coder_model"))
40 df_measerr_method <- copy(df)[sample(1:.N, sample.size), toxicity_coded_1 := toxicity_coded]
41 df_measerr_method <- df_measerr_method[,toxicity_coded := toxicity_coded_1]
42 sample_model <- glm(outcome_formula, df_measerr_method, family=binomial(link='logit'))
43 remember(coef(sample_model), paste0(remember_prefix, "coef_sample_model"))
44 remember(diag(vcov((sample_model))), paste0(remember_prefix, "se_sample_model"))
46 measerr_model <- measerr_mle_dv(df_measerr_method, outcome_formula, outcome_family=binomial(link='logit'), proxy_formula=proxy_formula, proxy_family=binomial(link='logit'))
48 inv_hessian = solve(measerr_model$hessian)
49 stderr = diag(inv_hessian)
50 remember(stderr, paste0(remember_prefix, "measerr_model_stderr"))
51 remember(measerr_model$par, paste0(remember_prefix, "measerr_model_par"))
54 print("running first example")
56 pred_formula = toxicity_pred ~ likes + race_disclosed
57 outcome_formula = toxicity_coded ~ likes + race_disclosed
58 proxy_formula = toxicity_pred ~ toxicity_coded*race_disclosed*likes
60 compare_dv_models(pred_formula = pred_formula,
61 outcome_formula = outcome_formula,
62 proxy_formula = proxy_formula,
66 remember_prefix='cc_ex_tox.likes.race_disclosed')
69 print("running second example")
71 compare_dv_models(pred_formula = pred_formula,
72 outcome_formula = outcome_formula,
73 proxy_formula = proxy_formula,
77 remember_prefix='cc_ex_tox.likes.race_disclosed.medsamp')
80 print("running third example")
82 compare_dv_models(pred_formula = pred_formula,
83 outcome_formula = outcome_formula,
84 proxy_formula = proxy_formula,
88 remember_prefix='cc_ex_tox.likes.race_disclosed.largesamp')