1 source("../simulations/RemembR/R/RemembeR.R")
2 change.remember.file("iv_perspective_example.RDS")
4 source('load_perspective_data.R')
5 source("../simulations/measerr_methods.R")
7 remember(accuracies, "civil_comments_accuracies")
8 remember(f1s, "civil_comments_f1s")
9 remember(positive_cases, "civil_comments_positive_cases")
10 remember(proportions_cases, "civil_comments_proportions_cases")
11 remember(cortab, "civil_comments_cortab")
12 remember(nrow(df), 'n.annotated.comments')
16 ## another simple enough example: is P(toxic | funny and white) > P(toxic | funny nand white)? Or, are funny comments more toxic when people disclose that they are white?
18 compare_iv_models <-function(pred_formula, outcome_formula, proxy_formula, truth_formula, df, sample.prop, sample.size, remember_prefix){
20 if(is.null(sample.prop)){
21 sample.prop <- sample.size / nrow(df)
23 if(is.null(sample.size)){
24 sample.size <- nrow(df) * sample.prop
27 remember(sample.size, paste0(remember_prefix, "sample.size"))
28 remember(sample.prop, paste0(remember_prefix, "sample.prop"))
29 remember(pred_formula, paste0(remember_prefix, "pred_formula"))
30 remember(outcome_formula, paste0(remember_prefix, 'outcome_formula'))
31 remember(proxy_formula, paste0(remember_prefix, 'proxy_formula'))
32 remember(truth_formula, paste0(remember_prefix, 'truth_formula'))
34 pred_model <- glm(pred_formula, df, family=binomial(link='logit'))
35 remember(coef(pred_model), paste0(remember_prefix, "coef_pred_model"))
36 remember(diag(vcov((pred_model))), paste0(remember_prefix, "se_pred_model"))
38 coder_model <- glm(outcome_formula, df, family=binomial(link='logit'))
39 remember(coef(coder_model), paste0(remember_prefix, "coef_coder_model"))
40 remember(diag(vcov((coder_model))), paste0(remember_prefix, "se_coder_model"))
42 df_measerr_method <- copy(df)[sample(1:.N, sample.size), toxicity_coded_1 := toxicity_coded]
43 df_measerr_method <- df_measerr_method[,toxicity_coded := toxicity_coded_1]
44 sample_model <- glm(outcome_formula, df_measerr_method, family=binomial(link='logit'))
45 remember(coef(sample_model), paste0(remember_prefix, "coef_sample_model"))
46 remember(diag(vcov((sample_model))), paste0(remember_prefix, "se_sample_model"))
48 measerr_model <- measerr_mle(df_measerr_method, outcome_formula, outcome_family=binomial(link='logit'), proxy_formula=proxy_formula, proxy_family=binomial(link='logit'),truth_formula=truth_formula, truth_family=binomial(link='logit'))
50 inv_hessian = solve(measerr_model$hessian)
51 stderr = diag(inv_hessian)
52 remember(stderr, paste0(remember_prefix, "measerr_model_stderr"))
53 remember(measerr_model$par, paste0(remember_prefix, "measerr_model_par"))
56 ## print("running first iv example")
58 ## sample.prop <- 0.05
60 ## compare_iv_models(white ~ toxicity_pred*funny,
61 ## outcome_formula = white ~ toxicity_coded*funny,
62 ## proxy_formula = toxicity_pred ~ toxicity_coded*funny*white,
63 ## truth_formula = toxicity_coded ~ 1,
65 ## sample.prop=sample.prop,
66 ## remember_prefix='cc_ex_tox.funny.white')
70 pred_formula <- race_disclosed ~ likes * toxicity_pred
71 outcome_formula <- race_disclosed ~ likes * toxicity_coded
72 proxy_formula <- toxicity_pred ~ toxicity_coded * race_disclosed * likes
73 truth_formula <- toxicity_coded ~ 1
75 print("running first example")
77 compare_iv_models(pred_formula = pred_formula,
78 outcome_formula = outcome_formula,
79 proxy_formula = proxy_formula,
80 truth_formula = truth_formula,
84 remember_prefix='cc_ex_tox.likes.race_disclosed')
86 print("running second example")
88 compare_iv_models(pred_formula = pred_formula,
89 outcome_formula = outcome_formula,
90 proxy_formula = proxy_formula,
91 truth_formula = truth_formula,
95 remember_prefix='cc_ex_tox.likes.race_disclosed.medsamp')
97 print("running third example")
99 compare_iv_models(pred_formula = race_disclosed ~ likes * toxicity_pred,
100 outcome_formula = race_disclosed ~ likes * toxicity_coded,
101 proxy_formula = toxicity_pred ~ toxicity_coded + race_disclosed,
102 truth_formula = toxicity_coded ~ 1,
106 remember_prefix='cc_ex_tox.likes.race_disclosed.largesamp')