]> code.communitydata.science - ml_measurement_error_public.git/blob - civil_comments/load_perspective_data.R
update simulation base from hyak
[ml_measurement_error_public.git] / civil_comments / load_perspective_data.R
1 library(data.table)
2 library(MASS)
3
4 set.seed(1111)
5
6 scores <- fread("perspective_scores.csv")
7 scores <- scores[,id:=as.character(id)]
8
9 df <- fread("all_data.csv")
10
11 # only use the data that has identity annotations
12 df <- df[identity_annotator_count > 0]
13
14 (df[!(df$id %in% scores$id)])
15
16 df <- df[scores,on='id',nomatch=NULL]
17
18 df[, ":="(identity_attack_pred = identity_attack_prob >=0.5,
19           insult_pred = insult_prob >= 0.5,
20           profanity_pred = profanity_prob >= 0.5,
21           severe_toxicity_pred = severe_toxicity_prob >= 0.5,
22           threat_pred = threat_prob >= 0.5,
23           toxicity_pred = toxicity_prob >= 0.5,
24           identity_attack_coded = identity_attack >= 0.5,
25           insult_coded = insult >= 0.5,
26           profanity_coded = obscene >= 0.5,
27           severe_toxicity_coded = severe_toxicity >= 0.5,
28           threat_coded = threat >= 0.5,
29           toxicity_coded = toxicity >= 0.5
30           )]
31
32 gt.0.5 <- function(v) { v >= 0.5 }
33 dt.apply.any <- function(fun, ...){apply(apply(cbind(...), 2, fun),1,any)}
34
35 df <- df[,":="(gender_disclosed = dt.apply.any(gt.0.5, male, female, transgender, other_gender),
36                sexuality_disclosed = dt.apply.any(gt.0.5, heterosexual, bisexual, other_sexual_orientation),
37                religion_disclosed = dt.apply.any(gt.0.5, christian, jewish, hindu, buddhist, atheist, muslim, other_religion),
38                race_disclosed = dt.apply.any(gt.0.5, white, black, asian, latino, other_race_or_ethnicity), 
39                disability_disclosed = dt.apply.any(gt.0.5,physical_disability, intellectual_or_learning_disability, psychiatric_or_mental_illness, other_disability))]
40
41 df <- df[,white:=gt.0.5(white)]
42
43
44 F1 <- function(y, predictions){
45     tp <- sum( (predictions == y) & (predictions==1))
46     fn <- sum( (predictions != y) & (predictions!=1))
47     fp <- sum( (predictions != y) & (predictions==1))
48     precision <- tp / (tp + fp)
49     recall <- tp / (tp + fn)
50     return (2 * precision * recall ) / (precision + recall)
51 }
52
53
54 ## toxicity is about 93% accurate, with an f1 of 0.8
55 ## identity_attack has high accuracy 97%, but an unfortunant f1 of 0.5.
56 ## threat has high accuracy 99%, but a really bad looking f1 of 0.48.
57 accuracies <- df[,.(identity_attack_acc = mean(identity_attack_pred == identity_attack_coded),
58                     insult_pred_acc = mean(insult_pred == insult_coded),
59                     profanity_acc = mean(profanity_pred == profanity_coded),
60                     severe_toxicity_acc = mean(severe_toxicity_pred == severe_toxicity_coded),
61                     theat_acc = mean(threat_pred == threat_coded),
62                     toxicity_acc = mean(toxicity_pred == toxicity_coded))]
63
64 f1s <- df[,.(identity_attack_f1 = F1(identity_attack_coded,identity_attack_pred),
65                     insult_f1 = F1(insult_coded,insult_pred),
66                     profanity_f1 = F1(profanity_coded,profanity_pred),
67                     severe_toxicity_f1 = F1(severe_toxicity_coded,severe_toxicity_pred),
68                     theat_f1 = F1(threat_coded,threat_pred),
69                     toxicity_f1 = F1(toxicity_coded,toxicity_pred))]
70
71 positive_cases <- df[,.(identity_attacks = sum(identity_attack_coded),
72                         insults = sum(insult_coded),
73                         profanities = sum(profanity_coded),
74                         severe_toxic_comments = sum(severe_toxicity_coded),
75                         threats = sum(threat_coded),
76                         toxic_comments = sum(toxicity_coded))]
77
78 ## there are 50,000 toxic comments, 13000 identity attacks, 30000 insults, 3000 profanities, 8 severe toxic, and 1000 threats.
79
80 proportions_cases <- df[,.(prop_identity = mean(identity_attack_coded),
81                            prop_insults = mean(insult_coded),
82                            prop_profanity = mean(profanity_coded),
83                            prop_severe = mean(severe_toxicity_coded),
84                            prop_threats = mean(threat_coded),
85                            prop_toxic = mean(toxicity_coded))]
86
87 ## at 11% of comments, "toxicity" seems not so badly skewed. Try toxicity first, and if it doesn't work out try insults.
88
89 ## now look for an example where differential error affects an identity, or a reaction.
90 df <- df[,":="(identity_error = identity_attack_coded - identity_attack_pred,
91                insult_error = insult_coded - insult_pred,
92                profanity_error = profanity_coded - profanity_pred,
93                severe_toxic_error = severe_toxicity_coded - severe_toxicity_pred,
94                threat_error = threat_coded - threat_pred,
95                toxicity_error = toxicity_coded - toxicity_pred)]
96
97 ## what's correlated with toxicity_error ?
98 df <- df[,approved := rating == "approved"]
99 df <- df[,white := white > 0.5]
100
101 cortab <- cor(df[,.(toxicity_error,
102                     identity_error,
103                     toxicity_coded,
104                     funny,
105                     approved,
106                     sad,
107                     wow,
108                     likes,
109                     disagree,
110                     male,
111                     female,
112                     transgender,
113                     other_gender,
114                     heterosexual,
115                     bisexual,
116                     other_sexual_orientation,
117                     christian,
118                     jewish,
119                     hindu,
120                     buddhist,
121                     atheist,
122                     other_religion,
123                     black,
124                     white,
125                     asian,
126                     latino,
127                     other_race_or_ethnicity,
128                     physical_disability,
129                     intellectual_or_learning_disability,
130                     psychiatric_or_mental_illness,
131                     other_disability,
132                     gender_disclosed,
133                     sexuality_disclosed,
134                     religion_disclosed,
135                     race_disclosed,
136                     disability_disclosed)])

Community Data Science Collective || Want to submit a patch?