1 library(predictionError)
3 options(amelia.parallel="no",
8 library(matrixStats) # for numerically stable logsumexps
10 source("pl_methods.R")
11 source("measerr_methods.R") ## for my more generic function.
13 ## This uses the pseudolikelihood approach from Carroll page 349.
15 ## assumes differential error, but that only depends on Y
16 ## inefficient, because pseudolikelihood
18 ## This uses the pseudo-likelihood approach from Carroll page 346.
19 my.pseudo.mle <- function(df){
20 p1.est <- mean(df[w_pred==1]$y.obs==1,na.rm=T)
21 p0.est <- mean(df[w_pred==0]$y.obs==0,na.rm=T)
23 nll <- function(B0, Bxy, Bzy){
25 pw <- vector(mode='numeric',length=nrow(df))
28 pw[df$w_pred==1] <- plogis(B0 + Bxy * dfw1$x + Bzy * dfw1$z, log=T)
29 pw[df$w_pred==0] <- plogis(B0 + Bxy * dfw0$x + Bzy * dfw0$z, lower.tail=FALSE, log=T)
31 probs <- colLogSumExps(rbind(log(1 - p0.est), log(p1.est + p0.est - 1) + pw))
35 mlefit <- mle2(minuslogl = nll, start = list(B0=0.0, Bxy=0.0, Bzy=0.0), control=list(maxit=1e6),method='L-BFGS-B')
41 ## This uses the likelihood approach from Carroll page 353.
42 ## assumes that we have a good measurement error model
43 my.mle <- function(df){
45 ## liklihood for observed responses
46 nll <- function(B0, Bxy, Bzy, gamma0, gamma_y, gamma_z, gamma_yz){
47 df.obs <- df[!is.na(y.obs)]
50 p.y.obs <- vector(mode='numeric', length=nrow(df.obs))
52 p.y.obs[yobs1] <- plogis(B0 + Bxy * df.obs[yobs1]$x + Bzy*df.obs[yobs1]$z,log=T)
53 p.y.obs[yobs0] <- plogis(B0 + Bxy * df.obs[yobs0]$x + Bzy*df.obs[yobs0]$z,lower.tail=FALSE,log=T)
55 wobs0 <- df.obs$w_pred==0
56 wobs1 <- df.obs$w_pred==1
57 p.w.obs <- vector(mode='numeric', length=nrow(df.obs))
59 p.w.obs[wobs1] <- plogis(gamma0 + gamma_y * df.obs[wobs1]$y + gamma_z*df.obs[wobs1]$z + df.obs[wobs1]$z*df.obs[wobs1]$y* gamma_yz, log=T)
60 p.w.obs[wobs0] <- plogis(gamma0 + gamma_y * df.obs[wobs0]$y + gamma_z*df.obs[wobs0]$z + df.obs[wobs0]$z*df.obs[wobs0]$y* gamma_yz, lower.tail=FALSE, log=T)
62 p.obs <- p.w.obs + p.y.obs
64 df.unobs <- df[is.na(y.obs)]
66 p.unobs.0 <- vector(mode='numeric',length=nrow(df.unobs))
67 p.unobs.1 <- vector(mode='numeric',length=nrow(df.unobs))
69 wunobs.0 <- df.unobs$w_pred == 0
70 wunobs.1 <- df.unobs$w_pred == 1
72 p.unobs.0[wunobs.1] <- plogis(B0 + Bxy * df.unobs[wunobs.1]$x + Bzy*df.unobs[wunobs.1]$z, log=T) + plogis(gamma0 + gamma_y + gamma_z*df.unobs[wunobs.1]$z + df.unobs[wunobs.1]$z*gamma_yz, log=T)
74 p.unobs.0[wunobs.0] <- plogis(B0 + Bxy * df.unobs[wunobs.0]$x + Bzy*df.unobs[wunobs.0]$z, log=T) + plogis(gamma0 + gamma_y + gamma_z*df.unobs[wunobs.0]$z + df.unobs[wunobs.0]$z*gamma_yz, lower.tail=FALSE, log=T)
76 p.unobs.1[wunobs.1] <- plogis(B0 + Bxy * df.unobs[wunobs.1]$x + Bzy*df.unobs[wunobs.1]$z, log=T, lower.tail=FALSE) + plogis(gamma0 + gamma_z*df.unobs[wunobs.1]$z, log=T)
78 p.unobs.1[wunobs.0] <- plogis(B0 + Bxy * df.unobs[wunobs.0]$x + Bzy*df.unobs[wunobs.0]$z, log=T, lower.tail=FALSE) + plogis(gamma0 + gamma_z*df.unobs[wunobs.0]$z, lower.tail=FALSE, log=T)
80 p.unobs <- colLogSumExps(rbind(p.unobs.1, p.unobs.0))
82 p <- c(p.obs, p.unobs)
87 mlefit <- mle2(minuslogl = nll, start = list(B0=0, Bxy=0,Bzy=0, gamma0=0, gamma_y=0, gamma_z=0, gamma_yz=0), control=list(maxit=1e6),method='L-BFGS-B')
92 run_simulation_depvar <- function(df, result, outcome_formula=y~x+z, proxy_formula=w_pred~y){
94 (accuracy <- df[,mean(w_pred==y)])
95 result <- append(result, list(accuracy=accuracy))
96 (error.cor.z <- cor(df$z, df$y - df$w_pred))
97 (error.cor.x <- cor(df$x, df$y - df$w_pred))
98 (error.cor.y <- cor(df$y, df$y - df$w_pred))
99 result <- append(result, list(error.cor.x = error.cor.x,
100 error.cor.z = error.cor.z,
101 error.cor.y = error.cor.y))
103 model.null <- glm(y~1, data=df,family=binomial(link='logit'))
104 (model.true <- glm(y ~ x + z, data=df,family=binomial(link='logit')))
105 (lik.ratio <- exp(logLik(model.true) - logLik(model.null)))
107 true.ci.Bxy <- confint(model.true)['x',]
108 true.ci.Bzy <- confint(model.true)['z',]
110 result <- append(result, list(cor.xz=cor(df$x,df$z)))
111 result <- append(result, list(lik.ratio=lik.ratio))
113 result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
114 Bzy.est.true=coef(model.true)['z'],
115 Bxy.ci.upper.true = true.ci.Bxy[2],
116 Bxy.ci.lower.true = true.ci.Bxy[1],
117 Bzy.ci.upper.true = true.ci.Bzy[2],
118 Bzy.ci.lower.true = true.ci.Bzy[1]))
120 (model.feasible <- glm(y.obs~x+z,data=df,family=binomial(link='logit')))
122 feasible.ci.Bxy <- confint(model.feasible)['x',]
123 result <- append(result, list(Bxy.est.feasible=coef(model.feasible)['x'],
124 Bxy.ci.upper.feasible = feasible.ci.Bxy[2],
125 Bxy.ci.lower.feasible = feasible.ci.Bxy[1]))
127 feasible.ci.Bzy <- confint(model.feasible)['z',]
128 result <- append(result, list(Bzy.est.feasible=coef(model.feasible)['z'],
129 Bzy.ci.upper.feasible = feasible.ci.Bzy[2],
130 Bzy.ci.lower.feasible = feasible.ci.Bzy[1]))
132 (model.naive <- glm(w_pred~x+z, data=df, family=binomial(link='logit')))
134 naive.ci.Bxy <- confint(model.naive)['x',]
135 naive.ci.Bzy <- confint(model.naive)['z',]
137 result <- append(result, list(Bxy.est.naive=coef(model.naive)['x'],
138 Bzy.est.naive=coef(model.naive)['z'],
139 Bxy.ci.upper.naive = naive.ci.Bxy[2],
140 Bxy.ci.lower.naive = naive.ci.Bxy[1],
141 Bzy.ci.upper.naive = naive.ci.Bzy[2],
142 Bzy.ci.lower.naive = naive.ci.Bzy[1]))
145 (model.naive.cont <- lm(w~x+z, data=df))
146 naivecont.ci.Bxy <- confint(model.naive.cont)['x',]
147 naivecont.ci.Bzy <- confint(model.naive.cont)['z',]
149 ## my implementation of liklihood based correction
153 mod.caroll.lik <- measerr_mle_dv(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula)
154 fischer.info <- solve(mod.caroll.lik$hessian)
155 coef <- mod.caroll.lik$par
156 ci.upper <- coef + sqrt(diag(fischer.info)) * 1.96
157 ci.lower <- coef - sqrt(diag(fischer.info)) * 1.96
158 result <- append(result,
159 list(Bxy.est.mle = coef['x'],
160 Bxy.ci.upper.mle = ci.upper['x'],
161 Bxy.ci.lower.mle = ci.lower['x'],
162 Bzy.est.mle = coef['z'],
163 Bzy.ci.upper.mle = ci.upper['z'],
164 Bzy.ci.lower.mle = ci.lower['z']))
167 ## my implementatoin of liklihood based correction
168 mod.zhang <- zhang.mle.dv(df)
169 coef <- coef(mod.zhang)
170 ci <- confint(mod.zhang,method='quad')
172 result <- append(result,
173 list(Bxy.est.zhang = coef['Bxy'],
174 Bxy.ci.upper.zhang = ci['Bxy','97.5 %'],
175 Bxy.ci.lower.zhang = ci['Bxy','2.5 %'],
176 Bzy.est.zhang = coef['Bzy'],
177 Bzy.ci.upper.zhang = ci['Bzy','97.5 %'],
178 Bzy.ci.lower.zhang = ci['Bzy','2.5 %']))
182 # amelia says use normal distribution for binary variables.
184 amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('y','ystar','w'))
185 mod.amelia.k <- zelig(y.obs~x+z, model='ls', data=amelia.out.k$imputations, cite=FALSE)
186 (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
187 est.x.mi <- coefse['x','Estimate']
188 est.x.se <- coefse['x','Std.Error']
189 result <- append(result,
190 list(Bxy.est.amelia.full = est.x.mi,
191 Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
192 Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se
195 est.z.mi <- coefse['z','Estimate']
196 est.z.se <- coefse['z','Std.Error']
198 result <- append(result,
199 list(Bzy.est.amelia.full = est.z.mi,
200 Bzy.ci.upper.amelia.full = est.z.mi + 1.96 * est.z.se,
201 Bzy.ci.lower.amelia.full = est.z.mi - 1.96 * est.z.se
209 ## outcome_formula, proxy_formula, and truth_formula are passed to measerr_mle
210 run_simulation <- function(df, result, outcome_formula=y~x+z, proxy_formula=NULL, truth_formula=NULL){
212 accuracy <- df[,mean(w_pred==x)]
213 accuracy.y0 <- df[y<=0,mean(w_pred==x)]
214 accuracy.y1 <- df[y>=0,mean(w_pred==x)]
215 cor.y.xi <- cor(df$x - df$w_pred, df$y)
217 fnr <- df[w_pred==0,mean(w_pred!=x)]
218 fnr.y0 <- df[(w_pred==0) & (y<=0),mean(w_pred!=x)]
219 fnr.y1 <- df[(w_pred==0) & (y>=0),mean(w_pred!=x)]
221 fpr <- df[w_pred==1,mean(w_pred!=x)]
222 fpr.y0 <- df[(w_pred==1) & (y<=0),mean(w_pred!=x)]
223 fpr.y1 <- df[(w_pred==1) & (y>=0),mean(w_pred!=x)]
224 cor.resid.w_pred <- cor(resid(lm(y~x+z,df)),df$w_pred)
226 result <- append(result, list(accuracy=accuracy,
227 accuracy.y0=accuracy.y0,
228 accuracy.y1=accuracy.y1,
236 cor.resid.w_pred=cor.resid.w_pred
239 result <- append(result, list(cor.xz=cor(df$x,df$z)))
240 (model.true <- lm(y ~ x + z, data=df))
241 true.ci.Bxy <- confint(model.true)['x',]
242 true.ci.Bzy <- confint(model.true)['z',]
244 result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
245 Bzy.est.true=coef(model.true)['z'],
246 Bxy.ci.upper.true = true.ci.Bxy[2],
247 Bxy.ci.lower.true = true.ci.Bxy[1],
248 Bzy.ci.upper.true = true.ci.Bzy[2],
249 Bzy.ci.lower.true = true.ci.Bzy[1]))
251 (model.feasible <- lm(y~x.obs+z,data=df))
253 feasible.ci.Bxy <- confint(model.feasible)['x.obs',]
254 result <- append(result, list(Bxy.est.feasible=coef(model.feasible)['x.obs'],
255 Bxy.ci.upper.feasible = feasible.ci.Bxy[2],
256 Bxy.ci.lower.feasible = feasible.ci.Bxy[1]))
258 feasible.ci.Bzy <- confint(model.feasible)['z',]
259 result <- append(result, list(Bzy.est.feasible=coef(model.feasible)['z'],
260 Bzy.ci.upper.feasible = feasible.ci.Bzy[2],
261 Bzy.ci.lower.feasible = feasible.ci.Bzy[1]))
263 (model.naive <- lm(y~w_pred+z, data=df))
265 naive.ci.Bxy <- confint(model.naive)['w_pred',]
266 naive.ci.Bzy <- confint(model.naive)['z',]
268 result <- append(result, list(Bxy.est.naive=coef(model.naive)['w_pred'],
269 Bzy.est.naive=coef(model.naive)['z'],
270 Bxy.ci.upper.naive = naive.ci.Bxy[2],
271 Bxy.ci.lower.naive = naive.ci.Bxy[1],
272 Bzy.ci.upper.naive = naive.ci.Bzy[2],
273 Bzy.ci.lower.naive = naive.ci.Bzy[1]))
277 amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('x','w'))
278 mod.amelia.k <- zelig(y~x.obs+z, model='ls', data=amelia.out.k$imputations, cite=FALSE)
279 (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
281 est.x.mi <- coefse['x.obs','Estimate']
282 est.x.se <- coefse['x.obs','Std.Error']
283 result <- append(result,
284 list(Bxy.est.amelia.full = est.x.mi,
285 Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
286 Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se
289 est.z.mi <- coefse['z','Estimate']
290 est.z.se <- coefse['z','Std.Error']
292 result <- append(result,
293 list(Bzy.est.amelia.full = est.z.mi,
294 Bzy.ci.upper.amelia.full = est.z.mi + 1.96 * est.z.se,
295 Bzy.ci.lower.amelia.full = est.z.mi - 1.96 * est.z.se
300 temp.df <- temp.df[,x:=x.obs]
301 mod.caroll.lik <- measerr_mle(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula, truth_formula=truth_formula)
304 ## mod.calibrated.mle <- mecor(y ~ MeasError(w_pred, reference = x.obs) + z, df, B=400, method='efficient')
305 ## (mod.calibrated.mle)
306 ## (mecor.ci <- summary(mod.calibrated.mle)$c$ci['x.obs',])
307 ## result <- append(result, list(
308 ## Bxy.est.mecor = mecor.ci['Estimate'],
309 ## Bxy.ci.upper.mecor = mecor.ci['UCI'],
310 ## Bxy.ci.lower.mecor = mecor.ci['LCI'])
319 tryCatch({fischer.info <- solve(mod.caroll.lik$hessian)
320 ci.upper <- coef + sqrt(diag(fischer.info)) * 1.96
321 ci.lower <- coef - sqrt(diag(fischer.info)) * 1.96
324 error=function(e) {result[['error']] <- as.character(e)
327 coef <- mod.caroll.lik$par
329 result <- append(result,
330 list(Bxy.est.mle = coef['x'],
331 Bxy.ci.upper.mle = ci.upper['x'],
332 Bxy.ci.lower.mle = ci.lower['x'],
333 Bzy.est.mle = coef['z'],
334 Bzy.ci.upper.mle = ci.upper['z'],
335 Bzy.ci.lower.mle = ci.lower['z']))
337 mod.zhang.lik <- zhang.mle.iv(df)
338 coef <- coef(mod.zhang.lik)
339 ci <- confint(mod.zhang.lik,method='quad')
340 result <- append(result,
341 list(Bxy.est.zhang = coef['Bxy'],
342 Bxy.ci.upper.zhang = ci['Bxy','97.5 %'],
343 Bxy.ci.lower.zhang = ci['Bxy','2.5 %'],
344 Bzy.est.zhang = coef['Bzy'],
345 Bzy.ci.upper.zhang = ci['Bzy','97.5 %'],
346 Bzy.ci.lower.zhang = ci['Bzy','2.5 %']))
348 ## What if we can't observe k -- most realistic scenario. We can't include all the ML features in a model.
349 ## amelia.out.nok <- amelia(df, m=200, p2s=0, idvars=c("x","w_pred"), noms=noms)
350 ## mod.amelia.nok <- zelig(y~x.obs+g, model='ls', data=amelia.out.nok$imputations, cite=FALSE)
351 ## (coefse <- combine_coef_se(mod.amelia.nok, messages=FALSE))
353 ## est.x.mi <- coefse['x.obs','Estimate']
354 ## est.x.se <- coefse['x.obs','Std.Error']
355 ## result <- append(result,
356 ## list(Bxy.est.amelia.nok = est.x.mi,
357 ## Bxy.ci.upper.amelia.nok = est.x.mi + 1.96 * est.x.se,
358 ## Bxy.ci.lower.amelia.nok = est.x.mi - 1.96 * est.x.se
361 ## est.g.mi <- coefse['g','Estimate']
362 ## est.g.se <- coefse['g','Std.Error']
364 ## result <- append(result,
365 ## list(Bgy.est.amelia.nok = est.g.mi,
366 ## Bgy.ci.upper.amelia.nok = est.g.mi + 1.96 * est.g.se,
367 ## Bgy.ci.lower.amelia.nok = est.g.mi - 1.96 * est.g.se
371 m <- nrow(df[!is.na(x.obs)])
372 p <- v <- train <- rep(0,N)
376 df <- df[order(x.obs)]
381 # gmm gets pretty close
382 (gmm.res <- predicted_covariates(y, x, z, w, v, train, p, max_iter=100, verbose=TRUE))
384 result <- append(result,
385 list(Bxy.est.gmm = gmm.res$beta[1,1],
386 Bxy.ci.upper.gmm = gmm.res$confint[1,2],
387 Bxy.ci.lower.gmm = gmm.res$confint[1,1],
388 gmm.ER_pval = gmm.res$ER_pval
391 result <- append(result,
392 list(Bzy.est.gmm = gmm.res$beta[2,1],
393 Bzy.ci.upper.gmm = gmm.res$confint[2,2],
394 Bzy.ci.lower.gmm = gmm.res$confint[2,1]))
398 ## mod.calibrated.mle <- mecor(y ~ MeasError(w_pred, reference = x.obs) + z, df, B=400, method='efficient')
399 ## (mod.calibrated.mle)
400 ## (mecor.ci <- summary(mod.calibrated.mle)$c$ci['x.obs',])
401 ## result <- append(result, list(
402 ## Bxy.est.mecor = mecor.ci['Estimate'],
403 ## Bxy.ci.upper.mecor = mecor.ci['UCI'],
404 ## Bxy.ci.lower.mecor = mecor.ci['LCI'])
407 ## (mecor.ci <- summary(mod.calibrated.mle)$c$ci['z',])
409 ## result <- append(result, list(
410 ## Bzy.est.mecor = mecor.ci['Estimate'],
411 ## Bzy.ci.upper.mecor = mecor.ci['UCI'],
412 ## Bzy.ci.lower.mecor = mecor.ci['LCI'])
415 ## error = function(e){
416 ## message("An error occurred:\n",e)
417 ## result$error <- paste0(result$error, '\n', e)
421 ## rm(list=c("df","y","x","g","w","v","train","p","amelia.out.k","amelia.out.nok", "mod.calibrated.mle","gmm.res","mod.amelia.k","mod.amelia.nok", "model.true","model.naive","model.feasible"))