]> code.communitydata.science - ml_measurement_error_public.git/blob - civil_comments/02_iv_example.R
real-data example on raw perspective scores
[ml_measurement_error_public.git] / civil_comments / 02_iv_example.R
1 source("../simulations/RemembR/R/RemembeR.R")
2 change.remember.file("iv_perspective_example.RDS")
3
4 source('load_perspective_data.R')
5 source("../simulations/measerr_methods.R")
6
7 remember(accuracies, "civil_comments_accuracies")
8 remember(f1s, "civil_comments_f1s")
9 remember(positive_cases, "civil_comments_positive_cases")
10 remember(proportions_cases, "civil_comments_proportions_cases")
11 remember(cortab, "civil_comments_cortab")
12 remember(nrow(df), 'n.annotated.comments')
13 # for reproducibility
14 set.seed(1)
15
16 ## another simple enough example: is P(toxic | funny and white) > P(toxic | funny nand white)? Or, are funny comments more toxic when people disclose that they are white?
17
18 compare_iv_models <-function(pred_formula, outcome_formula, proxy_formula, truth_formula, df, sample.prop, sample.size, remember_prefix){
19
20     if(is.null(sample.prop)){
21         sample.prop <- sample.size / nrow(df)
22     }
23     if(is.null(sample.size)){
24         sample.size <- nrow(df) * sample.prop
25     }
26
27     remember(sample.size, paste0(remember_prefix, "sample.size"))
28     remember(sample.prop, paste0(remember_prefix, "sample.prop"))
29     remember(pred_formula, paste0(remember_prefix, "pred_formula"))
30     remember(outcome_formula, paste0(remember_prefix, 'outcome_formula'))
31     remember(proxy_formula, paste0(remember_prefix, 'proxy_formula'))
32     remember(truth_formula, paste0(remember_prefix, 'truth_formula'))
33
34     pred_model <- glm(pred_formula, df, family=binomial(link='logit'))
35     remember(coef(pred_model), paste0(remember_prefix, "coef_pred_model"))
36     remember(diag(vcov((pred_model))), paste0(remember_prefix, "se_pred_model"))
37
38     coder_model <- glm(outcome_formula, df, family=binomial(link='logit'))
39     remember(coef(coder_model), paste0(remember_prefix, "coef_coder_model"))
40     remember(diag(vcov((coder_model))), paste0(remember_prefix, "se_coder_model"))
41
42     df_measerr_method <- copy(df)[sample(1:.N, sample.size), toxicity_coded_1 := toxicity_coded]
43     df_measerr_method <- df_measerr_method[,toxicity_coded := toxicity_coded_1]
44     sample_model <- glm(outcome_formula, df_measerr_method, family=binomial(link='logit'))
45     remember(coef(sample_model), paste0(remember_prefix, "coef_sample_model"))
46     remember(diag(vcov((sample_model))), paste0(remember_prefix, "se_sample_model"))
47
48     measerr_model <- measerr_mle(df_measerr_method, outcome_formula, outcome_family=binomial(link='logit'), proxy_formula=proxy_formula, proxy_family=binomial(link='logit'),truth_formula=truth_formula, truth_family=binomial(link='logit'))
49
50     inv_hessian = solve(measerr_model$hessian)
51     stderr = diag(inv_hessian)
52     remember(stderr, paste0(remember_prefix, "measerr_model_stderr"))
53     remember(measerr_model$par, paste0(remember_prefix, "measerr_model_par"))
54 }
55
56 ## print("running first iv example")
57
58 ## sample.prop <- 0.05
59
60 ## compare_iv_models(white ~ toxicity_pred*funny,
61 ##                   outcome_formula = white ~ toxicity_coded*funny,
62 ##                   proxy_formula = toxicity_pred ~ toxicity_coded*funny*white,
63 ##                   truth_formula = toxicity_coded ~ 1,
64 ##                   df=df,
65 ##                   sample.prop=sample.prop,
66 ##                   remember_prefix='cc_ex_tox.funny.white')
67
68
69
70 pred_formula <- race_disclosed ~ likes * toxicity_pred
71 outcome_formula <- race_disclosed ~ likes * toxicity_coded
72 proxy_formula <- toxicity_pred ~ toxicity_coded * race_disclosed * likes
73 truth_formula <- toxicity_coded ~ 1
74
75 print("running first example")
76
77 compare_iv_models(pred_formula = pred_formula,
78                   outcome_formula = outcome_formula,
79                   proxy_formula = proxy_formula,
80                   truth_formula = truth_formula,
81                   df=df,
82                   sample.prop=0.01,
83                   sample.size=NULL,
84                   remember_prefix='cc_ex_tox.likes.race_disclosed')
85
86 print("running second example")
87
88 compare_iv_models(pred_formula = pred_formula,
89                   outcome_formula = outcome_formula,
90                   proxy_formula = proxy_formula,
91                   truth_formula = truth_formula,
92                   df=df,
93                   sample.prop=NULL,
94                   sample.size=10000,
95                   remember_prefix='cc_ex_tox.likes.race_disclosed.medsamp')
96
97 print("running third example")
98
99 compare_iv_models(pred_formula = race_disclosed ~ likes * toxicity_pred,
100                   outcome_formula = race_disclosed ~ likes * toxicity_coded,
101                   proxy_formula = toxicity_pred ~ toxicity_coded + race_disclosed,
102                   truth_formula = toxicity_coded ~ 1,
103                   df=df,
104                   sample.prop=0.05,
105                   sample.size=NULL,
106                   remember_prefix='cc_ex_tox.likes.race_disclosed.largesamp')
107

Community Data Science Collective || Want to submit a patch?