]> code.communitydata.science - ml_measurement_error_public.git/blob - simulations/simulation_base.R
changes from klone
[ml_measurement_error_public.git] / simulations / simulation_base.R
1 library(predictionError)
2 library(mecor)
3 options(amelia.parallel="no",
4         amelia.ncpus=1)
5 library(Amelia)
6 library(Zelig)
7 library(bbmle)
8 library(matrixStats) # for numerically stable logsumexps
9
10 source("pl_methods.R")
11 source("measerr_methods.R") ## for my more generic function.
12
13 ## This uses the pseudolikelihood approach from Carroll page 349.
14 ## assumes MAR
15 ## assumes differential error, but that only depends on Y
16 ## inefficient, because pseudolikelihood
17     
18 ## This uses the pseudo-likelihood approach from Carroll page 346.
19 my.pseudo.mle <- function(df){
20     p1.est <- mean(df[w_pred==1]$y.obs==1,na.rm=T)
21     p0.est <- mean(df[w_pred==0]$y.obs==0,na.rm=T)
22     
23     nll <- function(B0, Bxy, Bzy){
24
25         pw <- vector(mode='numeric',length=nrow(df))
26         dfw1 <- df[w_pred==1]
27         dfw0 <- df[w_pred==0]
28         pw[df$w_pred==1] <- plogis(B0 + Bxy * dfw1$x + Bzy * dfw1$z, log=T)
29         pw[df$w_pred==0] <- plogis(B0 + Bxy * dfw0$x + Bzy * dfw0$z, lower.tail=FALSE, log=T)
30         
31         probs <- colLogSumExps(rbind(log(1 - p0.est), log(p1.est + p0.est - 1) + pw))
32         return(-1*sum(probs))
33     }
34     
35     mlefit <- mle2(minuslogl = nll, start = list(B0=0.0, Bxy=0.0, Bzy=0.0), control=list(maxit=1e6),method='L-BFGS-B')
36     return(mlefit)
37
38 }
39
40  
41 ## This uses the likelihood approach from Carroll page 353.
42 ## assumes that we have a good measurement error model
43 my.mle <- function(df){
44     
45     ## liklihood for observed responses
46     nll <- function(B0, Bxy, Bzy, gamma0, gamma_y, gamma_z, gamma_yz){
47         df.obs <- df[!is.na(y.obs)]
48         yobs0 <- df.obs$y==0 
49         yobs1 <- df.obs$y==1
50         p.y.obs <- vector(mode='numeric', length=nrow(df.obs))
51         
52         p.y.obs[yobs1] <- plogis(B0 + Bxy * df.obs[yobs1]$x + Bzy*df.obs[yobs1]$z,log=T)
53         p.y.obs[yobs0] <- plogis(B0 + Bxy * df.obs[yobs0]$x + Bzy*df.obs[yobs0]$z,lower.tail=FALSE,log=T)
54
55         wobs0 <- df.obs$w_pred==0
56         wobs1 <- df.obs$w_pred==1
57         p.w.obs <- vector(mode='numeric', length=nrow(df.obs))
58
59         p.w.obs[wobs1] <- plogis(gamma0 + gamma_y * df.obs[wobs1]$y + gamma_z*df.obs[wobs1]$z + df.obs[wobs1]$z*df.obs[wobs1]$y* gamma_yz, log=T)
60         p.w.obs[wobs0] <- plogis(gamma0 + gamma_y * df.obs[wobs0]$y + gamma_z*df.obs[wobs0]$z + df.obs[wobs0]$z*df.obs[wobs0]$y* gamma_yz, lower.tail=FALSE, log=T)
61         
62         p.obs <- p.w.obs + p.y.obs
63
64         df.unobs <- df[is.na(y.obs)]
65
66         p.unobs.0 <- vector(mode='numeric',length=nrow(df.unobs))
67         p.unobs.1 <- vector(mode='numeric',length=nrow(df.unobs))
68
69         wunobs.0 <- df.unobs$w_pred == 0
70         wunobs.1 <- df.unobs$w_pred == 1
71         
72         p.unobs.0[wunobs.1] <- plogis(B0 + Bxy * df.unobs[wunobs.1]$x + Bzy*df.unobs[wunobs.1]$z, log=T) + plogis(gamma0 + gamma_y + gamma_z*df.unobs[wunobs.1]$z + df.unobs[wunobs.1]$z*gamma_yz, log=T)
73
74         p.unobs.0[wunobs.0] <- plogis(B0 + Bxy * df.unobs[wunobs.0]$x + Bzy*df.unobs[wunobs.0]$z, log=T) + plogis(gamma0 + gamma_y + gamma_z*df.unobs[wunobs.0]$z + df.unobs[wunobs.0]$z*gamma_yz, lower.tail=FALSE, log=T)
75
76         p.unobs.1[wunobs.1] <- plogis(B0 + Bxy * df.unobs[wunobs.1]$x + Bzy*df.unobs[wunobs.1]$z, log=T, lower.tail=FALSE) + plogis(gamma0 + gamma_z*df.unobs[wunobs.1]$z, log=T)
77
78         p.unobs.1[wunobs.0] <- plogis(B0 + Bxy * df.unobs[wunobs.0]$x + Bzy*df.unobs[wunobs.0]$z, log=T, lower.tail=FALSE) + plogis(gamma0 + gamma_z*df.unobs[wunobs.0]$z, lower.tail=FALSE, log=T)
79
80         p.unobs <- colLogSumExps(rbind(p.unobs.1, p.unobs.0))
81
82         p <- c(p.obs, p.unobs)
83
84         return(-1*(sum(p)))
85     }
86
87     mlefit <- mle2(minuslogl = nll, start = list(B0=0, Bxy=0,Bzy=0, gamma0=0, gamma_y=0, gamma_z=0, gamma_yz=0), control=list(maxit=1e6),method='L-BFGS-B')
88
89     return(mlefit)
90 }
91
92 run_simulation_depvar <- function(df, result, outcome_formula=y~x+z, proxy_formula=w_pred~y, confint_method='quad'){
93
94     (accuracy <- df[,mean(w_pred==y)])
95     result <- append(result, list(accuracy=accuracy))
96     (error.cor.z <- cor(df$z, df$y - df$w_pred))
97     (error.cor.x <- cor(df$x, df$y - df$w_pred))
98     (error.cor.y <- cor(df$y, df$y - df$w_pred))
99     result <- append(result, list(error.cor.x = error.cor.x,
100                                   error.cor.z = error.cor.z,
101                                   error.cor.y = error.cor.y))
102
103     model.null <- glm(y~1, data=df,family=binomial(link='logit'))
104     (model.true <- glm(y ~ x + z, data=df,family=binomial(link='logit')))
105     (lik.ratio <- exp(logLik(model.true) - logLik(model.null)))
106
107     true.ci.Bxy <- confint(model.true)['x',]
108     true.ci.Bzy <- confint(model.true)['z',]
109
110     result <- append(result, list(cor.xz=cor(df$x,df$z)))
111     result <- append(result, list(lik.ratio=lik.ratio))
112
113     result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
114                                   Bzy.est.true=coef(model.true)['z'],
115                                   Bxy.ci.upper.true = true.ci.Bxy[2],
116                                   Bxy.ci.lower.true = true.ci.Bxy[1],
117                                   Bzy.ci.upper.true = true.ci.Bzy[2],
118                                   Bzy.ci.lower.true = true.ci.Bzy[1]))
119                                   
120     (model.feasible <- glm(y.obs~x+z,data=df,family=binomial(link='logit')))
121
122     feasible.ci.Bxy <- confint(model.feasible)['x',]
123     result <- append(result, list(Bxy.est.feasible=coef(model.feasible)['x'],
124                                   Bxy.ci.upper.feasible = feasible.ci.Bxy[2],
125                                   Bxy.ci.lower.feasible = feasible.ci.Bxy[1]))
126
127     feasible.ci.Bzy <- confint(model.feasible)['z',]
128     result <- append(result, list(Bzy.est.feasible=coef(model.feasible)['z'],
129                                   Bzy.ci.upper.feasible = feasible.ci.Bzy[2],
130                                   Bzy.ci.lower.feasible = feasible.ci.Bzy[1]))
131
132     (model.naive <- glm(w_pred~x+z, data=df, family=binomial(link='logit')))
133
134     naive.ci.Bxy <- confint(model.naive)['x',]
135     naive.ci.Bzy <- confint(model.naive)['z',]
136
137     result <- append(result, list(Bxy.est.naive=coef(model.naive)['x'],
138                                   Bzy.est.naive=coef(model.naive)['z'],
139                                   Bxy.ci.upper.naive = naive.ci.Bxy[2],
140                                   Bxy.ci.lower.naive = naive.ci.Bxy[1],
141                                   Bzy.ci.upper.naive = naive.ci.Bzy[2],
142                                   Bzy.ci.lower.naive = naive.ci.Bzy[1]))
143
144
145     (model.naive.cont <- lm(w~x+z, data=df))
146     naivecont.ci.Bxy <- confint(model.naive.cont)['x',]
147     naivecont.ci.Bzy <- confint(model.naive.cont)['z',]
148
149     ## my implementation of liklihood based correction
150
151     temp.df <- copy(df)
152     temp.df[,y:=y.obs]
153
154     mod.caroll.lik <- measerr_mle_dv(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula)
155     fischer.info <- solve(mod.caroll.lik$hessian)
156     coef <- mod.caroll.lik$par
157     ci.upper <- coef + sqrt(diag(fischer.info)) * 1.96
158     ci.lower <- coef - sqrt(diag(fischer.info)) * 1.96
159
160     result <- append(result,
161                      list(Bxy.est.mle = coef['x'],
162                           Bxy.ci.upper.mle = ci.upper['x'],
163                           Bxy.ci.lower.mle = ci.lower['x'],
164                           Bzy.est.mle = coef['z'],
165                           Bzy.ci.upper.mle = ci.upper['z'],
166                           Bzy.ci.lower.mle = ci.lower['z']))
167
168     mod.caroll.profile.lik <- measerr_mle_dv(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula, method='bbmle')
169     coef <- coef(mod.caroll.profile.lik)
170     ci <- confint(mod.caroll.profile.lik, method='spline')
171     ci.lower <- ci[,'2.5 %']
172     ci.upper <- ci[,'97.5 %']
173
174     result <- append(result,
175                      list(Bxy.est.mle.profile = coef['x'],
176                           Bxy.ci.upper.mle.profile = ci.upper['x'],
177                           Bxy.ci.lower.mle.profile = ci.lower['x'],
178                           Bzy.est.mle.profile = coef['z'],
179                           Bzy.ci.upper.mle.profile = ci.upper['z'],
180                           Bzy.ci.lower.mle.profile = ci.lower['z']))
181
182     ## my implementatoin of liklihood based correction
183     mod.zhang <- zhang.mle.dv(df)
184     coef <- coef(mod.zhang)
185     ci <- confint(mod.zhang,method='quad')
186
187     result <- append(result,
188                      list(Bxy.est.zhang = coef['Bxy'],
189                           Bxy.ci.upper.zhang = ci['Bxy','97.5 %'],
190                           Bxy.ci.lower.zhang = ci['Bxy','2.5 %'],
191                           Bzy.est.zhang = coef['Bzy'],
192                           Bzy.ci.upper.zhang = ci['Bzy','97.5 %'],
193                           Bzy.ci.lower.zhang = ci['Bzy','2.5 %']))
194
195     
196
197     # amelia says use normal distribution for binary variables.
198     amelia_result <- list(Bxy.est.amelia.full = NA,
199                           Bxy.ci.upper.amelia.full = NA,
200                           Bxy.ci.lower.amelia.full = NA,
201                           Bzy.est.amelia.full = NA,
202                           Bzy.ci.upper.amelia.full = NA,
203                           Bzy.ci.lower.amelia.full = NA
204                           )
205
206     tryCatch({
207         amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('y','ystar','w'),ords="y.obs")
208         mod.amelia.k <- zelig(y.obs~x+z, model='logit', data=amelia.out.k$imputations, cite=FALSE)
209         (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
210         est.x.mi <- coefse['x','Estimate']
211         est.x.se <- coefse['x','Std.Error']
212
213         est.z.mi <- coefse['z','Estimate']
214         est.z.se <- coefse['z','Std.Error']
215         amelia_result <- list(Bxy.est.amelia.full = est.x.mi,
216                           Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
217                           Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se,
218                           Bzy.est.amelia.full = est.z.mi,
219                           Bzy.ci.upper.amelia.full = est.z.mi + 1.96 * est.z.se,
220                           Bzy.ci.lower.amelia.full = est.z.mi - 1.96 * est.z.se
221                           )
222     },
223     error = function(e){
224     result[['error']] <- e}
225     )
226     result <- append(result,amelia_result)
227
228     return(result)
229
230 }
231
232
233 ## outcome_formula, proxy_formula, and truth_formula are passed to measerr_mle 
234 run_simulation <-  function(df, result, outcome_formula=y~x+z, proxy_formula=NULL, truth_formula=NULL, confint_method='quad'){
235
236     accuracy <- df[,mean(w_pred==x)]
237     accuracy.y0 <- df[y<=0,mean(w_pred==x)]
238     accuracy.y1 <- df[y>=0,mean(w_pred==x)]
239     cor.y.xi <- cor(df$x - df$w_pred, df$y)
240
241     fnr <- df[w_pred==0,mean(w_pred!=x)]
242     fnr.y0 <- df[(w_pred==0) & (y<=0),mean(w_pred!=x)]
243     fnr.y1 <- df[(w_pred==0) & (y>=0),mean(w_pred!=x)]
244
245     fpr <- df[w_pred==1,mean(w_pred!=x)]
246     fpr.y0 <- df[(w_pred==1) & (y<=0),mean(w_pred!=x)]
247     fpr.y1 <- df[(w_pred==1) & (y>=0),mean(w_pred!=x)]
248     cor.resid.w_pred <- cor(resid(lm(y~x+z,df)),df$w_pred)
249
250     result <- append(result, list(accuracy=accuracy,
251                                   accuracy.y0=accuracy.y0,
252                                   accuracy.y1=accuracy.y1,
253                                   cor.y.xi=cor.y.xi,
254                                   fnr=fnr,
255                                   fnr.y0=fnr.y0,
256                                   fnr.y1=fnr.y1,
257                                   fpr=fpr,
258                                   fpr.y0=fpr.y0,
259                                   fpr.y1=fpr.y1,
260                                   cor.resid.w_pred=cor.resid.w_pred
261                                   ))
262
263     result <- append(result, list(cor.xz=cor(df$x,df$z)))
264     (model.true <- lm(y ~ x + z, data=df))
265     true.ci.Bxy <- confint(model.true)['x',]
266     true.ci.Bzy <- confint(model.true)['z',]
267
268     result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
269                                   Bzy.est.true=coef(model.true)['z'],
270                                   Bxy.ci.upper.true = true.ci.Bxy[2],
271                                   Bxy.ci.lower.true = true.ci.Bxy[1],
272                                   Bzy.ci.upper.true = true.ci.Bzy[2],
273                                   Bzy.ci.lower.true = true.ci.Bzy[1]))
274                                   
275     (model.feasible <- lm(y~x.obs+z,data=df))
276
277     feasible.ci.Bxy <- confint(model.feasible)['x.obs',]
278     result <- append(result, list(Bxy.est.feasible=coef(model.feasible)['x.obs'],
279                                   Bxy.ci.upper.feasible = feasible.ci.Bxy[2],
280                                   Bxy.ci.lower.feasible = feasible.ci.Bxy[1]))
281
282     feasible.ci.Bzy <- confint(model.feasible)['z',]
283     result <- append(result, list(Bzy.est.feasible=coef(model.feasible)['z'],
284                                   Bzy.ci.upper.feasible = feasible.ci.Bzy[2],
285                                   Bzy.ci.lower.feasible = feasible.ci.Bzy[1]))
286
287     (model.naive <- lm(y~w_pred+z, data=df))
288     
289     naive.ci.Bxy <- confint(model.naive)['w_pred',]
290     naive.ci.Bzy <- confint(model.naive)['z',]
291
292     result <- append(result, list(Bxy.est.naive=coef(model.naive)['w_pred'],
293                                   Bzy.est.naive=coef(model.naive)['z'],
294                                   Bxy.ci.upper.naive = naive.ci.Bxy[2],
295                                   Bxy.ci.lower.naive = naive.ci.Bxy[1],
296                                   Bzy.ci.upper.naive = naive.ci.Bzy[2],
297                                   Bzy.ci.lower.naive = naive.ci.Bzy[1]))
298
299     amelia_result <- list(
300         Bxy.est.amelia.full = NULL,
301         Bxy.ci.upper.amelia.full = NULL,
302         Bxy.ci.lower.amelia.full = NULL,
303         Bzy.est.amelia.full = NULL,
304         Bzy.ci.upper.amelia.full = NULL,
305         Bzy.ci.lower.amelia.full = NULL
306         )
307
308     tryCatch({
309         amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('x','w'))
310         mod.amelia.k <- zelig(y~x.obs+z, model='ls', data=amelia.out.k$imputations, cite=FALSE)
311         (coefse <- combine_coef_se(mod.amelia.k))
312
313         est.x.mi <- coefse['x.obs','Estimate']
314         est.x.se <- coefse['x.obs','Std.Error']
315         est.z.mi <- coefse['z','Estimate']
316         est.z.se <- coefse['z','Std.Error']
317
318         amelia_result <- list(Bxy.est.amelia.full = est.x.mi,
319                               Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
320                               Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se,
321                               Bzy.est.amelia.full = est.z.mi,
322                               Bzy.ci.upper.amelia.full = est.z.mi + 1.96 * est.z.se,
323                               Bzy.ci.lower.amelia.full = est.z.mi - 1.96 * est.z.se
324                               )
325
326     },
327
328     error = function(e){
329         result[['error']] <- e}
330     )
331
332
333     result <- append(result, amelia_result)
334
335
336    mle_result <- list(Bxy.est.mle = NULL,
337                       Bxy.ci.upper.mle = NULL,
338                       Bxy.ci.lower.mle = NULL,
339                       Bzy.est.mle = NULL,
340                       Bzy.ci.upper.mle = NULL,
341                       Bzy.ci.lower.mle = NULL)
342
343     tryCatch({
344         temp.df <- copy(df)
345         temp.df <- temp.df[,x:=x.obs]
346         mod.caroll.lik <- measerr_mle(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula, truth_formula=truth_formula, method='optim')
347         fischer.info <- solve(mod.caroll.lik$hessian)
348         coef <- mod.caroll.lik$par
349         ci.upper <- coef + sqrt(diag(fischer.info)) * 1.96
350         ci.lower <- coef - sqrt(diag(fischer.info)) * 1.96
351
352         mle_result <- list(Bxy.est.mle = coef['x'],
353                            Bxy.ci.upper.mle = ci.upper['x'],
354                            Bxy.ci.lower.mle = ci.lower['x'],
355                            Bzy.est.mle = coef['z'],
356                            Bzy.ci.upper.mle = ci.upper['z'],
357                            Bzy.ci.lower.mle = ci.lower['z'])
358         },
359         error=function(e) {result[['error']] <- as.character(e)
360         })
361
362     result <- append(result, mle_result)
363     mle_result_proflik <- list(Bxy.est.mle.profile = NULL,
364                                Bxy.ci.upper.mle.profile = NULL,
365                                Bxy.ci.lower.mle.profile = NULL,
366                                Bzy.est.mle.profile = NULL,
367                                Bzy.ci.upper.mle.profile = NULL,
368                                Bzy.ci.lower.mle.profile = NULL)
369
370     tryCatch({
371         ## confint_method == 'bbmle'
372         mod.caroll.lik <- measerr_mle(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula, truth_formula=truth_formula, method='bbmle')
373         coef <- coef(mod.caroll.lik)
374         ci <- confint(mod.caroll.lik, method='spline')
375         ci.lower <- ci[,'2.5 %']
376         ci.upper <- ci[,'97.5 %']
377
378         mle_result_proflik <- list(Bxy.est.mle.profile = coef['x'],
379                                    Bxy.ci.upper.mle.profile = ci.upper['x'],
380                                    Bxy.ci.lower.mle.profile = ci.lower['x'],
381                                    Bzy.est.mle.profile = coef['z'],
382                                    Bzy.ci.upper.mle.profile = ci.upper['z'],
383                                    Bzy.ci.lower.mle.profile = ci.lower['z'])
384     },
385
386     error=function(e) {result[['error']] <- as.character(e)
387     })
388         
389     result <- append(result, mle_result_proflik)
390
391     zhang_result <- list(Bxy.est.mle.zhang = NULL,
392                        Bxy.ci.upper.mle.zhang = NULL,
393                        Bxy.ci.lower.mle.zhang = NULL,
394                        Bzy.est.mle.zhang = NULL,
395                        Bzy.ci.upper.mle.zhang = NULL,
396                        Bzy.ci.lower.mle.zhang = NULL)
397
398     tryCatch({
399     mod.zhang.lik <- zhang.mle.iv(df)
400     coef <- coef(mod.zhang.lik)
401     ci <- confint(mod.zhang.lik,method='quad')
402     zhang_result <- list(Bxy.est.zhang = coef['Bxy'],
403                          Bxy.ci.upper.zhang = ci['Bxy','97.5 %'],
404                          Bxy.ci.lower.zhang = ci['Bxy','2.5 %'],
405                          Bzy.est.zhang = coef['Bzy'],
406                          Bzy.ci.upper.zhang = ci['Bzy','97.5 %'],
407                          Bzy.ci.lower.zhang = ci['Bzy','2.5 %'])
408     },
409     error=function(e) {result[['error']] <- as.character(e)
410     })
411     result <- append(result, zhang_result)
412
413     ## What if we can't observe k -- most realistic scenario. We can't include all the ML features in a model.
414     ## amelia.out.nok <- amelia(df, m=200, p2s=0, idvars=c("x","w_pred"), noms=noms)
415     ## mod.amelia.nok <- zelig(y~x.obs+g, model='ls', data=amelia.out.nok$imputations, cite=FALSE)
416     ## (coefse <- combine_coef_se(mod.amelia.nok, messages=FALSE))
417
418     ## est.x.mi <- coefse['x.obs','Estimate']
419     ## est.x.se <- coefse['x.obs','Std.Error']
420     ## result <- append(result,
421     ##                  list(Bxy.est.amelia.nok = est.x.mi,
422     ##                       Bxy.ci.upper.amelia.nok = est.x.mi + 1.96 * est.x.se,
423     ##                       Bxy.ci.lower.amelia.nok = est.x.mi - 1.96 * est.x.se
424     ##                       ))
425
426     ## est.g.mi <- coefse['g','Estimate']
427     ## est.g.se <- coefse['g','Std.Error']
428
429     ## result <- append(result,
430     ##                  list(Bgy.est.amelia.nok = est.g.mi,
431     ##                       Bgy.ci.upper.amelia.nok = est.g.mi + 1.96 * est.g.se,
432     ##                       Bgy.ci.lower.amelia.nok = est.g.mi - 1.96 * est.g.se
433     ##                       ))
434
435     N <- nrow(df)
436     m <- nrow(df[!is.na(x.obs)])
437     p <- v <- train <- rep(0,N)
438     M <- m
439     p[(M+1):(N)] <- 1
440     v[1:(M)] <- 1
441     df <- df[order(x.obs)]
442     y <- df[,y]
443     x <- df[,x.obs]
444     z <- df[,z]
445     w <- df[,w_pred]
446     # gmm gets pretty close
447     (gmm.res <- predicted_covariates(y, x, z, w, v, train, p, max_iter=100, verbose=TRUE))
448
449     result <- append(result,
450                      list(Bxy.est.gmm = gmm.res$beta[1,1],
451                           Bxy.ci.upper.gmm = gmm.res$confint[1,2],
452                           Bxy.ci.lower.gmm = gmm.res$confint[1,1],
453                           gmm.ER_pval = gmm.res$ER_pval
454                           ))
455
456     result <- append(result,
457                      list(Bzy.est.gmm = gmm.res$beta[2,1],
458                           Bzy.ci.upper.gmm = gmm.res$confint[2,2],
459                           Bzy.ci.lower.gmm = gmm.res$confint[2,1]))
460
461
462     ## tryCatch({
463     ## mod.calibrated.mle <- mecor(y ~ MeasError(w_pred, reference = x.obs) + z, df, B=400, method='efficient')
464     ## (mod.calibrated.mle)
465     ## (mecor.ci <- summary(mod.calibrated.mle)$c$ci['x.obs',])
466     ## result <- append(result, list(
467     ##                              Bxy.est.mecor = mecor.ci['Estimate'],
468     ##                              Bxy.ci.upper.mecor = mecor.ci['UCI'],
469     ##                              Bxy.ci.lower.mecor = mecor.ci['LCI'])
470     ##                  )
471
472     ## (mecor.ci <- summary(mod.calibrated.mle)$c$ci['z',])
473
474     ## result <- append(result, list(
475     ##                              Bzy.est.mecor = mecor.ci['Estimate'],
476     ##                              Bzy.ci.upper.mecor = mecor.ci['UCI'],
477     ##                              Bzy.ci.lower.mecor = mecor.ci['LCI'])
478     ##                  )
479     ## },
480     ## error = function(e){
481     ##     message("An error occurred:\n",e)
482     ##     result$error <- paste0(result$error, '\n', e)
483     ## }
484     ## )
485 ##    clean up memory
486 ##    rm(list=c("df","y","x","g","w","v","train","p","amelia.out.k","amelia.out.nok", "mod.calibrated.mle","gmm.res","mod.amelia.k","mod.amelia.nok", "model.true","model.naive","model.feasible"))
487     
488 ##    gc()
489     return(result)
490 }

Community Data Science Collective || Want to submit a patch?