1 library(predictionError)
 
   3 options(amelia.parallel="no",
 
   8 library(matrixStats) # for numerically stable logsumexps
 
  10 source("pl_methods.R")
 
  11 source("measerr_methods.R") ## for my more generic function.
 
  13 ## This uses the pseudolikelihood approach from Carroll page 349.
 
  15 ## assumes differential error, but that only depends on Y
 
  16 ## inefficient, because pseudolikelihood
 
  18 ## This uses the pseudo-likelihood approach from Carroll page 346.
 
  19 my.pseudo.mle <- function(df){
 
  20     p1.est <- mean(df[w_pred==1]$y.obs==1,na.rm=T)
 
  21     p0.est <- mean(df[w_pred==0]$y.obs==0,na.rm=T)
 
  23     nll <- function(B0, Bxy, Bzy){
 
  25         pw <- vector(mode='numeric',length=nrow(df))
 
  28         pw[df$w_pred==1] <- plogis(B0 + Bxy * dfw1$x + Bzy * dfw1$z, log=T)
 
  29         pw[df$w_pred==0] <- plogis(B0 + Bxy * dfw0$x + Bzy * dfw0$z, lower.tail=FALSE, log=T)
 
  31         probs <- colLogSumExps(rbind(log(1 - p0.est), log(p1.est + p0.est - 1) + pw))
 
  35     mlefit <- mle2(minuslogl = nll, start = list(B0=0.0, Bxy=0.0, Bzy=0.0), control=list(maxit=1e6),method='L-BFGS-B')
 
  41 ## This uses the likelihood approach from Carroll page 353.
 
  42 ## assumes that we have a good measurement error model
 
  43 my.mle <- function(df){
 
  45     ## liklihood for observed responses
 
  46     nll <- function(B0, Bxy, Bzy, gamma0, gamma_y, gamma_z, gamma_yz){
 
  47         df.obs <- df[!is.na(y.obs)]
 
  50         p.y.obs <- vector(mode='numeric', length=nrow(df.obs))
 
  52         p.y.obs[yobs1] <- plogis(B0 + Bxy * df.obs[yobs1]$x + Bzy*df.obs[yobs1]$z,log=T)
 
  53         p.y.obs[yobs0] <- plogis(B0 + Bxy * df.obs[yobs0]$x + Bzy*df.obs[yobs0]$z,lower.tail=FALSE,log=T)
 
  55         wobs0 <- df.obs$w_pred==0
 
  56         wobs1 <- df.obs$w_pred==1
 
  57         p.w.obs <- vector(mode='numeric', length=nrow(df.obs))
 
  59         p.w.obs[wobs1] <- plogis(gamma0 + gamma_y * df.obs[wobs1]$y + gamma_z*df.obs[wobs1]$z + df.obs[wobs1]$z*df.obs[wobs1]$y* gamma_yz, log=T)
 
  60         p.w.obs[wobs0] <- plogis(gamma0 + gamma_y * df.obs[wobs0]$y + gamma_z*df.obs[wobs0]$z + df.obs[wobs0]$z*df.obs[wobs0]$y* gamma_yz, lower.tail=FALSE, log=T)
 
  62         p.obs <- p.w.obs + p.y.obs
 
  64         df.unobs <- df[is.na(y.obs)]
 
  66         p.unobs.0 <- vector(mode='numeric',length=nrow(df.unobs))
 
  67         p.unobs.1 <- vector(mode='numeric',length=nrow(df.unobs))
 
  69         wunobs.0 <- df.unobs$w_pred == 0
 
  70         wunobs.1 <- df.unobs$w_pred == 1
 
  72         p.unobs.0[wunobs.1] <- plogis(B0 + Bxy * df.unobs[wunobs.1]$x + Bzy*df.unobs[wunobs.1]$z, log=T) + plogis(gamma0 + gamma_y + gamma_z*df.unobs[wunobs.1]$z + df.unobs[wunobs.1]$z*gamma_yz, log=T)
 
  74         p.unobs.0[wunobs.0] <- plogis(B0 + Bxy * df.unobs[wunobs.0]$x + Bzy*df.unobs[wunobs.0]$z, log=T) + plogis(gamma0 + gamma_y + gamma_z*df.unobs[wunobs.0]$z + df.unobs[wunobs.0]$z*gamma_yz, lower.tail=FALSE, log=T)
 
  76         p.unobs.1[wunobs.1] <- plogis(B0 + Bxy * df.unobs[wunobs.1]$x + Bzy*df.unobs[wunobs.1]$z, log=T, lower.tail=FALSE) + plogis(gamma0 + gamma_z*df.unobs[wunobs.1]$z, log=T)
 
  78         p.unobs.1[wunobs.0] <- plogis(B0 + Bxy * df.unobs[wunobs.0]$x + Bzy*df.unobs[wunobs.0]$z, log=T, lower.tail=FALSE) + plogis(gamma0 + gamma_z*df.unobs[wunobs.0]$z, lower.tail=FALSE, log=T)
 
  80         p.unobs <- colLogSumExps(rbind(p.unobs.1, p.unobs.0))
 
  82         p <- c(p.obs, p.unobs)
 
  87     mlefit <- mle2(minuslogl = nll, start = list(B0=0, Bxy=0,Bzy=0, gamma0=0, gamma_y=0, gamma_z=0, gamma_yz=0), control=list(maxit=1e6),method='L-BFGS-B')
 
  92 run_simulation_depvar <- function(df, result, outcome_formula=y~x+z, proxy_formula=w_pred~y, confint_method='quad'){
 
  94     (accuracy <- df[,mean(w_pred==y)])
 
  95     result <- append(result, list(accuracy=accuracy))
 
  96     (error.cor.z <- cor(df$z, df$y - df$w_pred))
 
  97     (error.cor.x <- cor(df$x, df$y - df$w_pred))
 
  98     (error.cor.y <- cor(df$y, df$y - df$w_pred))
 
  99     result <- append(result, list(error.cor.x = error.cor.x,
 
 100                                   error.cor.z = error.cor.z,
 
 101                                   error.cor.y = error.cor.y))
 
 103     model.null <- glm(y~1, data=df,family=binomial(link='logit'))
 
 104     (model.true <- glm(y ~ x + z, data=df,family=binomial(link='logit')))
 
 105     (lik.ratio <- exp(logLik(model.true) - logLik(model.null)))
 
 107     true.ci.Bxy <- confint(model.true)['x',]
 
 108     true.ci.Bzy <- confint(model.true)['z',]
 
 110     result <- append(result, list(cor.xz=cor(df$x,df$z)))
 
 111     result <- append(result, list(lik.ratio=lik.ratio))
 
 113     result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
 
 114                                   Bzy.est.true=coef(model.true)['z'],
 
 115                                   Bxy.ci.upper.true = true.ci.Bxy[2],
 
 116                                   Bxy.ci.lower.true = true.ci.Bxy[1],
 
 117                                   Bzy.ci.upper.true = true.ci.Bzy[2],
 
 118                                   Bzy.ci.lower.true = true.ci.Bzy[1]))
 
 120     (model.feasible <- glm(y.obs~x+z,data=df,family=binomial(link='logit')))
 
 122     feasible.ci.Bxy <- confint(model.feasible)['x',]
 
 123     result <- append(result, list(Bxy.est.feasible=coef(model.feasible)['x'],
 
 124                                   Bxy.ci.upper.feasible = feasible.ci.Bxy[2],
 
 125                                   Bxy.ci.lower.feasible = feasible.ci.Bxy[1]))
 
 127     feasible.ci.Bzy <- confint(model.feasible)['z',]
 
 128     result <- append(result, list(Bzy.est.feasible=coef(model.feasible)['z'],
 
 129                                   Bzy.ci.upper.feasible = feasible.ci.Bzy[2],
 
 130                                   Bzy.ci.lower.feasible = feasible.ci.Bzy[1]))
 
 132     (model.naive <- glm(w_pred~x+z, data=df, family=binomial(link='logit')))
 
 134     naive.ci.Bxy <- confint(model.naive)['x',]
 
 135     naive.ci.Bzy <- confint(model.naive)['z',]
 
 137     result <- append(result, list(Bxy.est.naive=coef(model.naive)['x'],
 
 138                                   Bzy.est.naive=coef(model.naive)['z'],
 
 139                                   Bxy.ci.upper.naive = naive.ci.Bxy[2],
 
 140                                   Bxy.ci.lower.naive = naive.ci.Bxy[1],
 
 141                                   Bzy.ci.upper.naive = naive.ci.Bzy[2],
 
 142                                   Bzy.ci.lower.naive = naive.ci.Bzy[1]))
 
 145     (model.naive.cont <- lm(w~x+z, data=df))
 
 146     naivecont.ci.Bxy <- confint(model.naive.cont)['x',]
 
 147     naivecont.ci.Bzy <- confint(model.naive.cont)['z',]
 
 149     ## my implementation of liklihood based correction
 
 154     mod.caroll.lik <- measerr_mle_dv(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula)
 
 155     fischer.info <- solve(mod.caroll.lik$hessian)
 
 156     coef <- mod.caroll.lik$par
 
 157     ci.upper <- coef + sqrt(diag(fischer.info)) * 1.96
 
 158     ci.lower <- coef - sqrt(diag(fischer.info)) * 1.96
 
 160     result <- append(result,
 
 161                      list(Bxy.est.mle = coef['x'],
 
 162                           Bxy.ci.upper.mle = ci.upper['x'],
 
 163                           Bxy.ci.lower.mle = ci.lower['x'],
 
 164                           Bzy.est.mle = coef['z'],
 
 165                           Bzy.ci.upper.mle = ci.upper['z'],
 
 166                           Bzy.ci.lower.mle = ci.lower['z']))
 
 168     mod.caroll.profile.lik <- measerr_mle_dv(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula, method='bbmle')
 
 169     coef <- coef(mod.caroll.profile.lik)
 
 170     ci <- confint(mod.caroll.profile.lik, method='spline')
 
 171     ci.lower <- ci[,'2.5 %']
 
 172     ci.upper <- ci[,'97.5 %']
 
 174     result <- append(result,
 
 175                      list(Bxy.est.mle.profile = coef['x'],
 
 176                           Bxy.ci.upper.mle.profile = ci.upper['x'],
 
 177                           Bxy.ci.lower.mle.profile = ci.lower['x'],
 
 178                           Bzy.est.mle.profile = coef['z'],
 
 179                           Bzy.ci.upper.mle.profile = ci.upper['z'],
 
 180                           Bzy.ci.lower.mle.profile = ci.lower['z']))
 
 182     ## my implementatoin of liklihood based correction
 
 183     mod.zhang <- zhang.mle.dv(df)
 
 184     coef <- coef(mod.zhang)
 
 185     ci <- confint(mod.zhang,method='quad')
 
 187     result <- append(result,
 
 188                      list(Bxy.est.zhang = coef['Bxy'],
 
 189                           Bxy.ci.upper.zhang = ci['Bxy','97.5 %'],
 
 190                           Bxy.ci.lower.zhang = ci['Bxy','2.5 %'],
 
 191                           Bzy.est.zhang = coef['Bzy'],
 
 192                           Bzy.ci.upper.zhang = ci['Bzy','97.5 %'],
 
 193                           Bzy.ci.lower.zhang = ci['Bzy','2.5 %']))
 
 197     # amelia says use normal distribution for binary variables.
 
 198     amelia_result <- list(Bxy.est.amelia.full = NA,
 
 199                           Bxy.ci.upper.amelia.full = NA,
 
 200                           Bxy.ci.lower.amelia.full = NA,
 
 201                           Bzy.est.amelia.full = NA,
 
 202                           Bzy.ci.upper.amelia.full = NA,
 
 203                           Bzy.ci.lower.amelia.full = NA
 
 207         amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('y','ystar','w'),ords="y.obs")
 
 208         mod.amelia.k <- zelig(y.obs~x+z, model='logit', data=amelia.out.k$imputations, cite=FALSE)
 
 209         (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
 
 210         est.x.mi <- coefse['x','Estimate']
 
 211         est.x.se <- coefse['x','Std.Error']
 
 213         est.z.mi <- coefse['z','Estimate']
 
 214         est.z.se <- coefse['z','Std.Error']
 
 215         amelia_result <- list(Bxy.est.amelia.full = est.x.mi,
 
 216                           Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
 
 217                           Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se,
 
 218                           Bzy.est.amelia.full = est.z.mi,
 
 219                           Bzy.ci.upper.amelia.full = est.z.mi + 1.96 * est.z.se,
 
 220                           Bzy.ci.lower.amelia.full = est.z.mi - 1.96 * est.z.se
 
 224     result[['error']] <- e}
 
 226     result <- append(result,amelia_result)
 
 233 ## outcome_formula, proxy_formula, and truth_formula are passed to measerr_mle 
 
 234 run_simulation <-  function(df, result, outcome_formula=y~x+z, proxy_formula=NULL, truth_formula=NULL, confint_method='quad'){
 
 236     accuracy <- df[,mean(w_pred==x)]
 
 237     accuracy.y0 <- df[y<=0,mean(w_pred==x)]
 
 238     accuracy.y1 <- df[y>=0,mean(w_pred==x)]
 
 239     cor.y.xi <- cor(df$x - df$w_pred, df$y)
 
 241     fnr <- df[w_pred==0,mean(w_pred!=x)]
 
 242     fnr.y0 <- df[(w_pred==0) & (y<=0),mean(w_pred!=x)]
 
 243     fnr.y1 <- df[(w_pred==0) & (y>=0),mean(w_pred!=x)]
 
 245     fpr <- df[w_pred==1,mean(w_pred!=x)]
 
 246     fpr.y0 <- df[(w_pred==1) & (y<=0),mean(w_pred!=x)]
 
 247     fpr.y1 <- df[(w_pred==1) & (y>=0),mean(w_pred!=x)]
 
 248     cor.resid.w_pred <- cor(resid(lm(y~x+z,df)),df$w_pred)
 
 250     result <- append(result, list(accuracy=accuracy,
 
 251                                   accuracy.y0=accuracy.y0,
 
 252                                   accuracy.y1=accuracy.y1,
 
 260                                   cor.resid.w_pred=cor.resid.w_pred
 
 263     result <- append(result, list(cor.xz=cor(df$x,df$z)))
 
 264     (model.true <- lm(y ~ x + z, data=df))
 
 265     true.ci.Bxy <- confint(model.true)['x',]
 
 266     true.ci.Bzy <- confint(model.true)['z',]
 
 268     result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
 
 269                                   Bzy.est.true=coef(model.true)['z'],
 
 270                                   Bxy.ci.upper.true = true.ci.Bxy[2],
 
 271                                   Bxy.ci.lower.true = true.ci.Bxy[1],
 
 272                                   Bzy.ci.upper.true = true.ci.Bzy[2],
 
 273                                   Bzy.ci.lower.true = true.ci.Bzy[1]))
 
 275     (model.feasible <- lm(y~x.obs+z,data=df))
 
 277     feasible.ci.Bxy <- confint(model.feasible)['x.obs',]
 
 278     result <- append(result, list(Bxy.est.feasible=coef(model.feasible)['x.obs'],
 
 279                                   Bxy.ci.upper.feasible = feasible.ci.Bxy[2],
 
 280                                   Bxy.ci.lower.feasible = feasible.ci.Bxy[1]))
 
 282     feasible.ci.Bzy <- confint(model.feasible)['z',]
 
 283     result <- append(result, list(Bzy.est.feasible=coef(model.feasible)['z'],
 
 284                                   Bzy.ci.upper.feasible = feasible.ci.Bzy[2],
 
 285                                   Bzy.ci.lower.feasible = feasible.ci.Bzy[1]))
 
 287     (model.naive <- lm(y~w_pred+z, data=df))
 
 289     naive.ci.Bxy <- confint(model.naive)['w_pred',]
 
 290     naive.ci.Bzy <- confint(model.naive)['z',]
 
 292     result <- append(result, list(Bxy.est.naive=coef(model.naive)['w_pred'],
 
 293                                   Bzy.est.naive=coef(model.naive)['z'],
 
 294                                   Bxy.ci.upper.naive = naive.ci.Bxy[2],
 
 295                                   Bxy.ci.lower.naive = naive.ci.Bxy[1],
 
 296                                   Bzy.ci.upper.naive = naive.ci.Bzy[2],
 
 297                                   Bzy.ci.lower.naive = naive.ci.Bzy[1]))
 
 299     amelia_result <- list(
 
 300         Bxy.est.amelia.full = NULL,
 
 301         Bxy.ci.upper.amelia.full = NULL,
 
 302         Bxy.ci.lower.amelia.full = NULL,
 
 303         Bzy.est.amelia.full = NULL,
 
 304         Bzy.ci.upper.amelia.full = NULL,
 
 305         Bzy.ci.lower.amelia.full = NULL
 
 309         amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('x','w'))
 
 310         mod.amelia.k <- zelig(y~x.obs+z, model='ls', data=amelia.out.k$imputations, cite=FALSE)
 
 311         (coefse <- combine_coef_se(mod.amelia.k))
 
 313         est.x.mi <- coefse['x.obs','Estimate']
 
 314         est.x.se <- coefse['x.obs','Std.Error']
 
 315         est.z.mi <- coefse['z','Estimate']
 
 316         est.z.se <- coefse['z','Std.Error']
 
 318         amelia_result <- list(Bxy.est.amelia.full = est.x.mi,
 
 319                               Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
 
 320                               Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se,
 
 321                               Bzy.est.amelia.full = est.z.mi,
 
 322                               Bzy.ci.upper.amelia.full = est.z.mi + 1.96 * est.z.se,
 
 323                               Bzy.ci.lower.amelia.full = est.z.mi - 1.96 * est.z.se
 
 329         result[['error']] <- e}
 
 333     result <- append(result, amelia_result)
 
 336    mle_result <- list(Bxy.est.mle = NULL,
 
 337                       Bxy.ci.upper.mle = NULL,
 
 338                       Bxy.ci.lower.mle = NULL,
 
 340                       Bzy.ci.upper.mle = NULL,
 
 341                       Bzy.ci.lower.mle = NULL)
 
 345         temp.df <- temp.df[,x:=x.obs]
 
 346         mod.caroll.lik <- measerr_mle(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula, truth_formula=truth_formula, method='optim')
 
 347         fischer.info <- solve(mod.caroll.lik$hessian)
 
 348         coef <- mod.caroll.lik$par
 
 349         ci.upper <- coef + sqrt(diag(fischer.info)) * 1.96
 
 350         ci.lower <- coef - sqrt(diag(fischer.info)) * 1.96
 
 352         mle_result <- list(Bxy.est.mle = coef['x'],
 
 353                            Bxy.ci.upper.mle = ci.upper['x'],
 
 354                            Bxy.ci.lower.mle = ci.lower['x'],
 
 355                            Bzy.est.mle = coef['z'],
 
 356                            Bzy.ci.upper.mle = ci.upper['z'],
 
 357                            Bzy.ci.lower.mle = ci.lower['z'])
 
 359         error=function(e) {result[['error']] <- as.character(e)
 
 362     result <- append(result, mle_result)
 
 363     mle_result_proflik <- list(Bxy.est.mle.profile = NULL,
 
 364                                Bxy.ci.upper.mle.profile = NULL,
 
 365                                Bxy.ci.lower.mle.profile = NULL,
 
 366                                Bzy.est.mle.profile = NULL,
 
 367                                Bzy.ci.upper.mle.profile = NULL,
 
 368                                Bzy.ci.lower.mle.profile = NULL)
 
 371         ## confint_method == 'bbmle'
 
 372         mod.caroll.lik <- measerr_mle(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula, truth_formula=truth_formula, method='bbmle')
 
 373         coef <- coef(mod.caroll.lik)
 
 374         ci <- confint(mod.caroll.lik, method='spline')
 
 375         ci.lower <- ci[,'2.5 %']
 
 376         ci.upper <- ci[,'97.5 %']
 
 378         mle_result_proflik <- list(Bxy.est.mle.profile = coef['x'],
 
 379                                    Bxy.ci.upper.mle.profile = ci.upper['x'],
 
 380                                    Bxy.ci.lower.mle.profile = ci.lower['x'],
 
 381                                    Bzy.est.mle.profile = coef['z'],
 
 382                                    Bzy.ci.upper.mle.profile = ci.upper['z'],
 
 383                                    Bzy.ci.lower.mle.profile = ci.lower['z'])
 
 386     error=function(e) {result[['error']] <- as.character(e)
 
 389     result <- append(result, mle_result_proflik)
 
 391     zhang_result <- list(Bxy.est.mle.zhang = NULL,
 
 392                        Bxy.ci.upper.mle.zhang = NULL,
 
 393                        Bxy.ci.lower.mle.zhang = NULL,
 
 394                        Bzy.est.mle.zhang = NULL,
 
 395                        Bzy.ci.upper.mle.zhang = NULL,
 
 396                        Bzy.ci.lower.mle.zhang = NULL)
 
 399     mod.zhang.lik <- zhang.mle.iv(df)
 
 400     coef <- coef(mod.zhang.lik)
 
 401     ci <- confint(mod.zhang.lik,method='quad')
 
 402     zhang_result <- list(Bxy.est.zhang = coef['Bxy'],
 
 403                          Bxy.ci.upper.zhang = ci['Bxy','97.5 %'],
 
 404                          Bxy.ci.lower.zhang = ci['Bxy','2.5 %'],
 
 405                          Bzy.est.zhang = coef['Bzy'],
 
 406                          Bzy.ci.upper.zhang = ci['Bzy','97.5 %'],
 
 407                          Bzy.ci.lower.zhang = ci['Bzy','2.5 %'])
 
 409     error=function(e) {result[['error']] <- as.character(e)
 
 411     result <- append(result, zhang_result)
 
 413     ## What if we can't observe k -- most realistic scenario. We can't include all the ML features in a model.
 
 414     ## amelia.out.nok <- amelia(df, m=200, p2s=0, idvars=c("x","w_pred"), noms=noms)
 
 415     ## mod.amelia.nok <- zelig(y~x.obs+g, model='ls', data=amelia.out.nok$imputations, cite=FALSE)
 
 416     ## (coefse <- combine_coef_se(mod.amelia.nok, messages=FALSE))
 
 418     ## est.x.mi <- coefse['x.obs','Estimate']
 
 419     ## est.x.se <- coefse['x.obs','Std.Error']
 
 420     ## result <- append(result,
 
 421     ##                  list(Bxy.est.amelia.nok = est.x.mi,
 
 422     ##                       Bxy.ci.upper.amelia.nok = est.x.mi + 1.96 * est.x.se,
 
 423     ##                       Bxy.ci.lower.amelia.nok = est.x.mi - 1.96 * est.x.se
 
 426     ## est.g.mi <- coefse['g','Estimate']
 
 427     ## est.g.se <- coefse['g','Std.Error']
 
 429     ## result <- append(result,
 
 430     ##                  list(Bgy.est.amelia.nok = est.g.mi,
 
 431     ##                       Bgy.ci.upper.amelia.nok = est.g.mi + 1.96 * est.g.se,
 
 432     ##                       Bgy.ci.lower.amelia.nok = est.g.mi - 1.96 * est.g.se
 
 436     m <- nrow(df[!is.na(x.obs)])
 
 437     p <- v <- train <- rep(0,N)
 
 441     df <- df[order(x.obs)]
 
 446     # gmm gets pretty close
 
 447     (gmm.res <- predicted_covariates(y, x, z, w, v, train, p, max_iter=100, verbose=TRUE))
 
 449     result <- append(result,
 
 450                      list(Bxy.est.gmm = gmm.res$beta[1,1],
 
 451                           Bxy.ci.upper.gmm = gmm.res$confint[1,2],
 
 452                           Bxy.ci.lower.gmm = gmm.res$confint[1,1],
 
 453                           gmm.ER_pval = gmm.res$ER_pval
 
 456     result <- append(result,
 
 457                      list(Bzy.est.gmm = gmm.res$beta[2,1],
 
 458                           Bzy.ci.upper.gmm = gmm.res$confint[2,2],
 
 459                           Bzy.ci.lower.gmm = gmm.res$confint[2,1]))
 
 463     ## mod.calibrated.mle <- mecor(y ~ MeasError(w_pred, reference = x.obs) + z, df, B=400, method='efficient')
 
 464     ## (mod.calibrated.mle)
 
 465     ## (mecor.ci <- summary(mod.calibrated.mle)$c$ci['x.obs',])
 
 466     ## result <- append(result, list(
 
 467     ##                              Bxy.est.mecor = mecor.ci['Estimate'],
 
 468     ##                              Bxy.ci.upper.mecor = mecor.ci['UCI'],
 
 469     ##                              Bxy.ci.lower.mecor = mecor.ci['LCI'])
 
 472     ## (mecor.ci <- summary(mod.calibrated.mle)$c$ci['z',])
 
 474     ## result <- append(result, list(
 
 475     ##                              Bzy.est.mecor = mecor.ci['Estimate'],
 
 476     ##                              Bzy.ci.upper.mecor = mecor.ci['UCI'],
 
 477     ##                              Bzy.ci.lower.mecor = mecor.ci['LCI'])
 
 480     ## error = function(e){
 
 481     ##     message("An error occurred:\n",e)
 
 482     ##     result$error <- paste0(result$error, '\n', e)
 
 486 ##    rm(list=c("df","y","x","g","w","v","train","p","amelia.out.k","amelia.out.nok", "mod.calibrated.mle","gmm.res","mod.amelia.k","mod.amelia.nok", "model.true","model.naive","model.feasible"))