1 source("RemembR/R/RemembeR.R")
 
   6 df <- data.table(read_feather("example_1.feather"))
 
   8 x.naive <- df[,.(N, m, Bxy, Bxy.est.naive, Bxy.ci.lower.naive, Bxy.ci.upper.naive)]
 
   9 x.naive <- x.naive[,':='(true.in.ci = as.integer((Bxy >= Bxy.ci.lower.naive) & (Bxy <= Bxy.ci.upper.naive)),
 
  10                          zero.in.ci = (0 >= Bxy.ci.lower.naive) & (0 <= Bxy.ci.upper.naive),
 
  11                          bias = Bxy - Bxy.est.naive,
 
  12                          sign.correct = as.integer(sign(Bxy) == sign(Bxy.est.naive)))]
 
  14 x.naive.plot <- x.naive[,.(p.true.in.ci = mean(true.in.ci),
 
  15                            mean.bias = mean(bias),
 
  16                            p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
 
  17                            mean.estimate=mean(Bxy.est.naive),
 
  18                            var.estimate=var(Bxy.est.naive),
 
  25 x.amelia.full <- df[,.(N, m, Bxy, Bxy.est.true, Bxy.ci.lower.amelia.full, Bxy.ci.upper.amelia.full, Bxy.est.amelia.full)]
 
  27 x.amelia.full <- x.amelia.full[,':='(true.in.ci = (Bxy.est.true >= Bxy.ci.lower.amelia.full) & (Bxy.est.true <= Bxy.ci.upper.amelia.full),
 
  28                                      zero.in.ci = (0 >= Bxy.ci.lower.amelia.full) & (0 <= Bxy.ci.upper.amelia.full),
 
  29                                      bias = Bxy.est.true - Bxy.est.amelia.full,
 
  30                                      sign.correct = sign(Bxy.est.true) == sign(Bxy.est.amelia.full))]
 
  32 x.amelia.full.plot <- x.amelia.full[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
 
  33                                        mean.bias = mean(bias),
 
  34                                        p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
 
  36                                        method='Multiple imputation'
 
  42 g.amelia.full <- df[,.(N, m, Bgy.est.true, Bgy.est.amelia.full, Bgy.ci.lower.amelia.full, Bgy.ci.upper.amelia.full)]
 
  43 g.amelia.full <- g.amelia.full[,':='(true.in.ci = (Bgy.est.true >= Bgy.ci.lower.amelia.full) & (Bgy.est.true <= Bgy.ci.upper.amelia.full),
 
  44                                      zero.in.ci = (0 >= Bgy.ci.lower.amelia.full) & (0 <= Bgy.ci.upper.amelia.full),
 
  45                                      bias =  Bgy.est.amelia.full - Bgy.est.true,
 
  46                                      sign.correct = sign(Bgy.est.true) == sign(Bgy.est.amelia.full))]
 
  48 g.amelia.full.plot <- g.amelia.full[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
 
  49                                        mean.bias = mean(bias),
 
  50                                        p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
 
  52                                        method='Multiple imputation'
 
  56 x.amelia.nok <- df[,.(N, m, Bxy.est.true, Bxy.est.amelia.nok, Bxy.ci.lower.amelia.nok, Bxy.ci.upper.amelia.nok)]
 
  57 x.amelia.nok <- x.amelia.nok[,':='(true.in.ci = (Bxy.est.true >= Bxy.ci.lower.amelia.nok) & (Bxy.est.true <= Bxy.ci.upper.amelia.nok),
 
  58                                      zero.in.ci = (0 >= Bxy.ci.lower.amelia.nok) & (0 <= Bxy.ci.upper.amelia.nok),
 
  59                                      bias =  Bxy.est.amelia.nok - Bxy.est.true,
 
  60                                      sign.correct = sign(Bxy.est.true) == sign(Bxy.est.amelia.nok))]
 
  62  x.amelia.nok.plot <- x.amelia.nok[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
 
  63                                        mean.bias = mean(bias),
 
  64                                      p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
 
  66                                      method='Multiple imputation (Classifier features unobserved)'
 
  70 g.amelia.nok <- df[,.(N, m, Bgy.est.true, Bgy.est.amelia.nok, Bgy.ci.lower.amelia.nok, Bgy.ci.upper.amelia.nok)]
 
  71 g.amelia.nok <- g.amelia.nok[,':='(true.in.ci = (Bgy.est.true >= Bgy.ci.lower.amelia.nok) & (Bgy.est.true <= Bgy.ci.upper.amelia.nok),
 
  72                                      zero.in.ci = (0 >= Bgy.ci.lower.amelia.nok) & (0 <= Bgy.ci.upper.amelia.nok),
 
  73                                      bias =  Bgy.est.amelia.nok - Bgy.est.true,
 
  74                                      sign.correct = sign(Bgy.est.true) == sign(Bgy.est.amelia.nok))]
 
  76 g.amelia.nok.plot <- g.amelia.nok[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
 
  77                                        mean.bias = mean(bias),
 
  78                                      p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
 
  80                                      method='Multiple imputation (Classifier features unobserved)'
 
  85 x.mecor <- df[,.(N,m,Bxy.est.true, Bxy.est.mecor,Bxy.lower.mecor, Bxy.upper.mecor)]
 
  87 x.mecor <- x.mecor[,':='(true.in.ci = (Bxy.est.true >= Bxy.lower.mecor) & (Bxy.est.true <= Bxy.upper.mecor),
 
  88                                      zero.in.ci = (0 >= Bxy.lower.mecor) & (0 <= Bxy.upper.mecor),
 
  89                                      bias =  Bxy.est.mecor - Bxy.est.true,
 
  90                                      sign.correct = sign(Bxy.est.true) == sign(Bxy.est.mecor))]
 
  92 x.mecor.plot <- x.mecor[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
 
  93                                        mean.bias = mean(bias),
 
  94                                      p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
 
  96                                      method='Regression Calibration'
 
 100 g.mecor <- df[,.(N,m,Bgy.est.true, Bgy.est.mecor,Bgy.lower.mecor, Bgy.upper.mecor)]
 
 102 g.mecor <- g.mecor[,':='(true.in.ci = (Bgy.est.true >= Bgy.lower.mecor) & (Bgy.est.true <= Bgy.upper.mecor),
 
 103                                      zero.in.ci = (0 >= Bgy.lower.mecor) & (0 <= Bgy.upper.mecor),
 
 104                                      bias =  Bgy.est.mecor - Bgy.est.true,
 
 105                                      sign.correct = sign(Bgy.est.true) == sign(Bgy.est.mecor))]
 
 107 g.mecor.plot <- g.mecor[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
 
 108                                        mean.bias = mean(bias),
 
 109                                      p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
 
 111                                      method='Regression Calibration'
 
 115 ## x.mecor <- df[,.(N,m,Bgy.est.true, Bgy.est.mecor,Bgy.ci.lower.mecor, Bgy.ci.upper.mecor)]
 
 117 ## x.mecor <- x.mecor[,':='(true.in.ci = (Bgy.est.true >= Bgy.ci.lower.mecor) & (Bgy.est.true <= Bgy.ci.upper.mecor),
 
 118 ##                                      zero.in.ci = (0 >= Bgy.ci.lower.mecor) & (0 <= Bgy.ci.upper.mecor),
 
 119 ##                                      bias =  Bgy.est.mecor - Bgy.est.true,
 
 120 ##                                      sign.correct = sign(Bgy.est.true) == sign(Bgy.est.mecor))]
 
 122 ## x.mecor.plot <- x.mecor[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
 
 123 ##                                        mean.bias = mean(bias),
 
 124 ##                                      p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
 
 126 ##                                      method='Regression Calibration'
 
 131 x.gmm <- df[,.(N,m,Bxy.est.true, Bxy.est.gmm,Bxy.ci.lower.gmm, Bxy.ci.upper.gmm)]
 
 132 x.gmm <- x.gmm[,':='(true.in.ci = (Bxy.est.true >= Bxy.ci.lower.gmm) & (Bxy.est.true <= Bxy.ci.upper.gmm),
 
 133                                      zero.in.ci = (0 >= Bxy.ci.lower.gmm) & (0 <= Bxy.ci.upper.gmm),
 
 134                                      bias =  Bxy.est.gmm - Bxy.est.true,
 
 135                                      sign.correct = sign(Bxy.est.true) == sign(Bxy.est.gmm))]
 
 137 x.gmm.plot <- x.gmm[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
 
 138                                        mean.bias = mean(bias),
 
 139                                      p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
 
 145 g.gmm <- df[,.(N,m,Bgy.est.true, Bgy.est.gmm,Bgy.ci.lower.gmm, Bgy.ci.upper.gmm)]
 
 146 g.gmm <- g.gmm[,':='(true.in.ci = (Bgy.est.true >= Bgy.ci.lower.gmm) & (Bgy.est.true <= Bgy.ci.upper.gmm),
 
 147                                      zero.in.ci = (0 >= Bgy.ci.lower.gmm) & (0 <= Bgy.ci.upper.gmm),
 
 148                                      bias =  Bgy.est.gmm - Bgy.est.true,
 
 149                                      sign.correct = sign(Bgy.est.true) == sign(Bgy.est.gmm))]
 
 151 g.gmm.plot <- g.gmm[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
 
 152                                        mean.bias = mean(bias),
 
 153                                      p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
 
 159 plot.df <- rbindlist(list(x.naive.plot,g.naive.plot,x.amelia.full.plot,g.amelia.full.plot,x.amelia.nok.plot,g.amelia.nok.plot, x.mecor.plot, g.mecor.plot, x.gmm.plot, g.gmm.plot))
 
 161 remember(plot.df,'example.1.plot.df')
 
 164 ggplot(plot.df,aes(y=N,x=m,color=p.sign.correct)) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c(option='D') + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size") 
 
 166 ggplot(plot.df,aes(y=N,x=m,color=abs(mean.bias))) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c(option='D') + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size") 
 
 168 ests <- df[,.(Bxy.est.true = mean(Bxy.est.true),
 
 169               Bxy.est.naive = mean(Bxy.est.naive),
 
 170               Bxy.est.feasible = mean(Bxy.est.feasible),
 
 171               Bxy.est.amelia.full = mean(Bxy.est.amelia.full),
 
 172               Bxy.est.amelia.nok = mean(Bxy.est.amelia.nok),
 
 173               Bxy.est.mecor = mean(Bxy.est.mecor),
 
 174               Bxy.est.gmm = mean(Bxy.est.gmm)),