- df <- df[,w_pred:=x]
-
- pg <- mean(g)
- px <- mean(x)
- accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2)
-
- # this works because of conditional probability
- accuracy_g0 <- prediction_accuracy / (pg*(accuracy_imbalance_ratio) + (1-pg))
- accuracy_g1 <- accuracy_imbalance_ratio * accuracy_g0
-
- dfg0 <- df[g==0]
- ng0 <- nrow(dfg0)
- dfg1 <- df[g==1]
- ng1 <- nrow(dfg1)
-
- dfg0 <- dfg0[sample(ng0, (1-accuracy_g0)*ng0), w_pred := (w_pred-1)**2]
- dfg1 <- dfg1[sample(ng1, (1-accuracy_g1)*ng1), w_pred := (w_pred-1)**2]
-
- df <- rbind(dfg0,dfg1)
-
- w <- predict(glm(x ~ w_pred,data=df,family=binomial(link='logit')),type='response')
- df <- df[,':='(w=w, w_pred = w_pred)]
+ ## probablity of an error is correlated with y
+ ## pz <- mean(z)
+ ## accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2)
+
+ ## # this works because of conditional probability
+ ## accuracy_z0 <- prediction_accuracy / (pz*(accuracy_imbalance_ratio) + (1-pz))
+ ## accuracy_z1 <- accuracy_imbalance_ratio * accuracy_z0
+
+ ## z0x0 <- df[(z==0) & (x==0)]$x
+ ## z0x1 <- df[(z==0) & (x==1)]$x
+ ## z1x0 <- df[(z==1) & (x==0)]$x
+ ## z1x1 <- df[(z==1) & (x==1)]$x
+
+ ## yz0x0 <- df[(z==0) & (x==0)]$y
+ ## yz0x1 <- df[(z==0) & (x==1)]$y
+ ## yz1x0 <- df[(z==1) & (x==0)]$y
+ ## yz1x1 <- df[(z==1) & (x==1)]$y
+
+ ## nz0x0 <- nrow(df[(z==0) & (x==0)])
+ ## nz0x1 <- nrow(df[(z==0) & (x==1)])
+ ## nz1x0 <- nrow(df[(z==1) & (x==0)])
+ ## nz1x1 <- nrow(df[(z==1) & (x==1)])
+
+ ## yz1 <- df[z==1]$y
+ ## yz1 <- df[z==1]$y
+
+ ## # tranform yz0.1 into a logistic distribution with mean accuracy_z0
+ ## acc.z0x0 <- plogis(0.5*scale(yz0x0) + qlogis(accuracy_z0))
+ ## acc.z0x1 <- plogis(0.5*scale(yz0x1) + qlogis(accuracy_z0))
+ ## acc.z1x0 <- plogis(1.5*scale(yz1x0) + qlogis(accuracy_z1))
+ ## acc.z1x1 <- plogis(1.5*scale(yz1x1) + qlogis(accuracy_z1))
+
+ ## w0z0x0 <- (1-z0x0)**2 + (-1)**(1-z0x0) * acc.z0x0
+ ## w0z0x1 <- (1-z0x1)**2 + (-1)**(1-z0x1) * acc.z0x1
+ ## w0z1x0 <- (1-z1x0)**2 + (-1)**(1-z1x0) * acc.z1x0
+ ## w0z1x1 <- (1-z1x1)**2 + (-1)**(1-z1x1) * acc.z1x1
+
+ ## ##perrorz0 <- w0z0*(pyz0)
+ ## ##perrorz1 <- w0z1*(pyz1)
+
+ ## w0z0x0.noisy.odds <- rlogis(nz0x0,qlogis(w0z0x0))
+ ## w0z0x1.noisy.odds <- rlogis(nz0x1,qlogis(w0z0x1))
+ ## w0z1x0.noisy.odds <- rlogis(nz1x0,qlogis(w0z1x0))
+ ## w0z1x1.noisy.odds <- rlogis(nz1x1,qlogis(w0z1x1))
+
+ ## df[(z==0)&(x==0),w:=plogis(w0z0x0.noisy.odds)]
+ ## df[(z==0)&(x==1),w:=plogis(w0z0x1.noisy.odds)]
+ ## df[(z==1)&(x==0),w:=plogis(w0z1x0.noisy.odds)]
+ ## df[(z==1)&(x==1),w:=plogis(w0z1x1.noisy.odds)]
+
+ ## df[,w_pred:=as.integer(w > 0.5)]
+ ## print(mean(df[z==0]$x == df[z==0]$w_pred))
+ ## print(mean(df[z==1]$x == df[z==1]$w_pred))
+ ## print(mean(df$w_pred == df$x))
+
+ odds.x1 <- qlogis(prediction_accuracy) + y_bias*qlogis(pnorm(scale(df[x==1]$y)))
+ odds.x0 <- qlogis(prediction_accuracy,lower.tail=F) + y_bias*qlogis(pnorm(scale(df[x==0]$y)))
+
+ ## acc.x0 <- p.correct[df[,x==0]]
+ ## acc.x1 <- p.correct[df[,x==1]]
+
+ df[x==0,w:=plogis(rlogis(.N,odds.x0))]
+ df[x==1,w:=plogis(rlogis(.N,odds.x1))]
+
+ df[,w_pred := as.integer(w > 0.5)]
+
+ print(mean(df[z==0]$x == df[z==0]$w_pred))
+ print(mean(df[z==1]$x == df[z==1]$w_pred))
+ print(mean(df$w_pred == df$x))
+ print(mean(df[y>=0]$w_pred == df[y>=0]$x))
+ print(mean(df[y<=0]$w_pred == df[y<=0]$x))