## one way to do it is by adding correlation to x.obs and y that isn't in w.
## in other words, the model is missing an important feature of x.obs that's related to y.
-simulate_data <- function(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed, xy.explained.variance=0.01, u.explained.variance=0.1){
+simulate_data <- function(N, m, B0, Bxy, Bgy, seed, y_explained_variance=0.025, prediction_accuracy=0.73, accuracy_imbalance_difference=0.3){
set.seed(seed)
-
- ## the true value of x
-
- g <- rbinom(N, 1, 0.5)
-
# make w and y dependent
- u <- rnorm(N,0,)
-
- xprime <- Bgx * g + rnorm(N,0,1)
-
- k <- Bkx*xprime + rnorm(N,0,1.5) + 1.1*Bkx*u
-
- x <- as.integer(logistic(scale(xprime)) > 0.5)
-
- y <- Bxy * x + Bgy * g + B0 + u + rnorm(N, 0, 1)
+ g <- rbinom(N, 1, 0.5)
+ x <- rbinom(N, 1, 0.5)
- df <- data.table(x=x,k=k,y=y,g=g)
+ y.var.epsilon <- (var(Bgy * g) + var(Bxy *x) + 2*cov(Bgy*g,Bxy*x)) * ((1-y_explained_variance)/y_explained_variance)
+ y.epsilon <- rnorm(N, sd = sqrt(y.var.epsilon))
+ y <- Bgy * g + Bxy * x + y.epsilon
- w.model <- glm(x ~ k,df, family=binomial(link='logit'))
+ df <- data.table(x=x,y=y,g=g)
- if( m < N){
+ if(m < N){
df <- df[sample(nrow(df), m), x.obs := x]
} else {
df <- df[, x.obs := x]
}
- df[, x.obs := x.obs]
+ df <- df[,w_pred:=x]
- w <- predict(w.model, df) + rnorm(N, 0, 1)
- ## y = B0 + B1x + e
+ pg <- mean(g)
+ px <- mean(x)
+ accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2)
- df[,':='(w=w, w_pred = as.integer(w>0.5),u=u)]
- return(df)
-}
+ # this works because of conditional probability
+ accuracy_g0 <- prediction_accuracy / (pg*(accuracy_imbalance_ratio) + (1-pg))
+ accuracy_g1 <- accuracy_imbalance_ratio * accuracy_g0
-schennach <- function(df){
+ dfg0 <- df[g==0]
+ ng0 <- nrow(dfg0)
+ dfg1 <- df[g==1]
+ ng1 <- nrow(dfg1)
- fwx <- glm(x.obs~w, df, family=binomial(link='logit'))
- df[,xstar_pred := predict(fwx, df)]
- gxt <- lm(y ~ xstar_pred+g, df)
+ dfg0 <- dfg0[sample(ng0, (1-accuracy_g0)*ng0), w_pred := (w_pred-1)**2]
+ dfg1 <- dfg1[sample(ng1, (1-accuracy_g1)*ng1), w_pred := (w_pred-1)**2]
-}
+ df <- rbind(dfg0,dfg1)
+ w <- predict(glm(x ~ w_pred,data=df,family=binomial(link='logit')),type='response')
+ df <- df[,':='(w=w, w_pred = w_pred)]
+ return(df)
+}
parser <- arg_parser("Simulate data and fit corrected models")
parser <- add_argument(parser, "--N", default=5000, help="number of observations of w")
parser <- add_argument(parser, "--m", default=200, help="m the number of ground truth observations")
parser <- add_argument(parser, "--seed", default=432, help='seed for the rng')
parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather')
+parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.01)
+parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.73)
+parser <- add_argument(parser, "--accuracy_imbalance_difference", help='how much more accurate is the predictive model for one class than the other?', default=0.3)
+
args <- parse_args(parser)
B0 <- 0
Bxy <- 0.2
-Bgy <- 0
-Bkx <- 2
-Bgx <- 0
+Bgy <- -0.2
+
+df <- simulate_data(args$N, args$m, B0, Bxy, Bgy, args$seed, args$y_explained_variance, args$prediction_accuracy, args$accuracy_imbalance_difference)
+
+result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference)
+outline <- run_simulation_depvar(df=df, result)
-outline <- run_simulation(simulate_data(args$N, args$m, B0, Bxy, Bgy, Bkx, Bgx, args$seed)
- ,list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'Bkx'=Bkx, 'Bgx'=Bgx, 'seed'=args$seed))
outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE)
if(file.exists(args$outfile)){