]> code.communitydata.science - ml_measurement_error_public.git/commitdiff
Add exploratory data analysis to come up with a real-data example.
authorNathan TeBlunthuis <nathante@uw.edu>
Tue, 29 Nov 2022 08:29:42 +0000 (00:29 -0800)
committerNathan TeBlunthuis <nathante@uw.edu>
Tue, 29 Nov 2022 08:29:42 +0000 (00:29 -0800)
civil_comments/Makefile [new file with mode: 0644]
civil_comments/design_example.R [new file with mode: 0644]
civil_comments/perspective_json_to_csv.jq [new file with mode: 0755]
civil_comments/perspective_json_to_csv.sh [new file with mode: 0755]

diff --git a/civil_comments/Makefile b/civil_comments/Makefile
new file mode 100644 (file)
index 0000000..3c331c2
--- /dev/null
@@ -0,0 +1,6 @@
+srun_1core=srun -A comdata -p compute-bigmem --mem=4G --time=12:00:00 -c 1 --pty /usr/bin/bash -l
+perspective_scores.csv: perspective_json_to_csv.sh perspective_results.json
+       $(srun_1core) ./$^ $@
+
+
+
diff --git a/civil_comments/design_example.R b/civil_comments/design_example.R
new file mode 100644 (file)
index 0000000..5991334
--- /dev/null
@@ -0,0 +1,156 @@
+library(data.table)
+library(MASS)
+
+scores <- fread("perspective_scores.csv")
+scores <- scores[,id:=as.character(id)]
+
+df <- fread("all_data.csv")
+
+# only use the data that has identity annotations
+df <- df[identity_annotator_count > 0]
+
+(df[!(df$id %in% scores$id)])
+
+df <- df[scores,on='id',nomatch=NULL]
+
+## how accurate are the classifiers?
+
+## the API claims that these scores are "probabilities"
+## say we care about the model of the classification, not the probability
+
+F1 <- function(y, predictions){
+    tp <- sum( (predictions == y) & (predictions==1))
+    fn <- sum( (predictions != y) & (predictions!=1))
+    fp <- sum( (predictions != y) & (predictions==1))
+    precision <- tp / (tp + fp)
+    recall <- tp / (tp + fn)
+    return (2 * precision * recall ) / (precision + recall)
+}
+
+df[, ":="(identity_attack_pred = identity_attack_prob >=0.5,
+          insult_pred = insult_prob >= 0.5,
+          profanity_pred = profanity_prob >= 0.5,
+          severe_toxicity_pred = severe_toxicity_prob >= 0.5,
+          threat_pred = threat_prob >= 0.5,
+          toxicity_pred = toxicity_prob >= 0.5,
+          identity_attack_coded = identity_attack >= 0.5,
+          insult_coded = insult >= 0.5,
+          profanity_coded = obscene >= 0.5,
+          severe_toxicity_coded = severe_toxicity >= 0.5,
+          threat_coded = threat >= 0.5,
+          toxicity_coded = toxicity >= 0.5
+          )]
+
+
+
+## toxicity is about 93% accurate, with an f1 of 0.8
+## identity_attack has high accuracy 97%, but an unfortunant f1 of 0.5.
+## threat has high accuracy 99%, but a really bad looking f1 of 0.48.
+accuracies <- df[,.(identity_attack_acc = mean(identity_attack_pred == identity_attack_coded),
+                    insult_pred_acc = mean(insult_pred == insult_coded),
+                    profanity_acc = mean(profanity_pred == profanity_coded),
+                    severe_toxicity_acc = mean(severe_toxicity_pred == severe_toxicity_coded),
+                    theat_acc = mean(threat_pred == threat_coded),
+                    toxicity_acc = mean(toxicity_pred == toxicity_coded))]
+
+f1s <- df[,.(identity_attack_f1 = F1(identity_attack_coded,identity_attack_pred),
+                    insult_f1 = F1(insult_coded,insult_pred),
+                    profanity_f1 = F1(profanity_coded,profanity_pred),
+                    severe_toxicity_f1 = F1(severe_toxicity_coded,severe_toxicity_pred),
+                    theat_f1 = F1(threat_coded,threat_pred),
+                    toxicity_f1 = F1(toxicity_coded,toxicity_pred))]
+
+positive_cases <- df[,.(identity_attacks = sum(identity_attack_coded),
+                        insults = sum(insult_coded),
+                        profanities = sum(profanity_coded),
+                        severe_toxic_comments = sum(severe_toxicity_coded),
+                        threats = sum(threat_coded),
+                        toxic_comments = sum(toxicity_coded))]
+
+## there are 50,000 toxic comments, 13000 identity attacks, 30000 insults, 3000 profanities, 8 severe toxic, and 1000 threats.
+
+proportions_cases <- df[,.(prop_identity = mean(identity_attack_coded),
+                           prop_insults = mean(insult_coded),
+                           prop_profanity = mean(profanity_coded),
+                           prop_severe = mean(severe_toxicity_coded),
+                           prop_threats = mean(threat_coded),
+                           prop_toxic = mean(toxicity_coded))]
+
+## at 11% of comments, "toxicity" seems not so badly skewed. Try toxicity first, and if it doesn't work out try insults.
+
+## now look for an example where differential error affects an identity, or a reaction.
+df <- df[,":="(identity_error = identity_attack_coded - identity_attack_pred,
+               insult_error = insult_coded - insult_pred,
+               profanity_error = profanity_coded - profanity_pred,
+               severe_toxic_error = severe_toxicity_coded - severe_toxicity_pred,
+               threat_error = threat_coded - threat_pred,
+               toxicity_error = toxicity_coded - toxicity_pred)]
+
+## what's correlated with toxicity_error ?
+df <- df[,approved := rating == "approved"]
+
+cortab <- cor(df[,.(toxicity_error,
+                    identity_error,
+                    toxicity_coded,
+                    funny,
+                    approved,
+                    sad,
+                    wow,
+                    likes,
+                    disagree,
+                    male,
+                    female,
+                    transgender,
+                    other_gender,
+                    heterosexual,
+                    bisexual,
+                    other_sexual_orientation,
+                    christian,
+                    jewish,
+                    hindu,
+                    buddhist,
+                    atheist,
+                    other_religion,
+                    black,
+                    white,
+                    asian,
+                    latino,
+                    other_race_or_ethnicity,
+                    physical_disability,
+                    intellectual_or_learning_disability,
+                    psychiatric_or_mental_illness,
+                    other_disability)])
+
+## toxicity error is weakly correlated pearson's R = 0.1 with both "white" and "black".
+
+## compare regressions with "white" or "black" as the outcome and "toxicity_coded" or "toxicity_pred" as a predictor.
+## here's a great example with presumambly non-differential error: about what identities is toxicity found humorous?
+## a bunch of stars reappear when you used the ground-truth data instead of the predictions.
+## pro/con of this example: will have to implement family='poisson'.
+## shouldn't be that bad though haha.
+cortab['toxicity_error',]
+cortab['toxicity_error','funny']
+cortab['toxicity_coded',]
+cortab['identity_error',]
+cortab['white',]
+
+glm(white ~ toxicity_coded + psychiatric_or_mental_illness, data = df, family=binomial(link='logit'))
+
+glm(white ~ toxicity_pred + psychiatric_or_mental_illness, data = df, family=binomial(link='logit'))
+
+m1 <- glm.nb(funny ~ (male + female + transgender + other_gender + heterosexual + bisexual + other_sexual_orientation + christian + jewish + hindu + buddhist + atheist + other_religion + asian + latino + other_race_or_ethnicity + physical_disability + intellectual_or_learning_disability + white + black + psychiatric_or_mental_illness)*toxicity_coded, data = df)
+
+m2 <- glm.nb(funny ~ (male + female + transgender + other_gender + heterosexual + bisexual + other_sexual_orientation + christian + jewish + hindu + buddhist + atheist + other_religion + asian + latino + other_race_or_ethnicity + physical_disability + intellectual_or_learning_disability + white + black + psychiatric_or_mental_illness)*toxicity_pred, data = df)
+
+m3 <- glm.nb(funny ~ (male + female + transgender + other_gender + heterosexual + bisexual + other_sexual_orientation + christian + jewish + hindu + buddhist + atheist + other_religion + asian + latino + other_race_or_ethnicity + physical_disability + intellectual_or_learning_disability + white + black + psychiatric_or_mental_illness)*toxicity, data = df)
+
+
+glm(white ~ disagree, data = df, family=binomial(link='logit'))
+
+## example with differential error
+
+glm(white ~ toxicity_coded + toxicity_error, data=df,family=binomial(link='logit'))
+
+glm(toxicity_coded ~ white, data = df, family=binomial(link='logit'))
+
+glm(toxicity_pred ~ white, data = df, family=binomial(link='logit'))
diff --git a/civil_comments/perspective_json_to_csv.jq b/civil_comments/perspective_json_to_csv.jq
new file mode 100755 (executable)
index 0000000..0688d21
--- /dev/null
@@ -0,0 +1,2 @@
+#!/usr/bin/bash
+cat $1 | jq "[.attributeScores.IDENTITY_ATTACK.summaryScore.value, .attributeScores.INSULT.summaryScore.value, .attributeScores.PROFANITY.summaryScore.value,.attributeScores.SEVERE_TOXICITY.summaryScore.value, .attributeScores.THREAT.summaryScore.value, .attributeScores.TOXICITY.summaryScore.value] | @csv" > $2
diff --git a/civil_comments/perspective_json_to_csv.sh b/civil_comments/perspective_json_to_csv.sh
new file mode 100755 (executable)
index 0000000..8e2aa13
--- /dev/null
@@ -0,0 +1,4 @@
+#!/usr/bin/bash
+header=id,identity_attack_prob,insult_prob,profanity_prob,severe_toxicity_prob,threat_prob,toxicity_prob
+echo "$header" > $2
+cat $1 | jq -r '[.id, .attributeScores.IDENTITY_ATTACK.summaryScore.value, .attributeScores.INSULT.summaryScore.value, .attributeScores.PROFANITY.summaryScore.value,.attributeScores.SEVERE_TOXICITY.summaryScore.value, .attributeScores.THREAT.summaryScore.value, .attributeScores.TOXICITY.summaryScore.value] | @csv' >>  $2

Community Data Science Collective || Want to submit a patch?