]> code.communitydata.science - ml_measurement_error_public.git/commitdiff
git-annex in nathante@n3246:/gscratch/comdata/users/nathante/ml_measurement_error_public
authorNathan TeBlunthuis <nathante@uw.edu>
Thu, 3 Nov 2022 00:46:04 +0000 (17:46 -0700)
committerNathan TeBlunthuis <nathante@uw.edu>
Thu, 3 Nov 2022 00:46:04 +0000 (17:46 -0700)
20 files changed:
simulations/.Rhistory
simulations/01_two_covariates.R
simulations/02_indep_differential.R
simulations/03_depvar.R
simulations/04_depvar_differential.R
simulations/05_irr_indep.R
simulations/06_irr_dv.R
simulations/Makefile
simulations/example_2_B.feather [deleted file]
simulations/example_3.feather
simulations/irr_dv_simulation_base.R
simulations/irr_simulation_base.R
simulations/measerr_methods.R
simulations/plot_dv_example.R
simulations/plot_example.R
simulations/plot_irr_dv_example.R
simulations/plot_irr_example.R
simulations/run_simulation.sbatch
simulations/simulation_base.R
simulations/summarize_estimator.R

index 6de9aa0e9381b1093a99bc7c1df21cc8ba80989c..f0a360925f17f601956a2834be22250b3815ed71 100644 (file)
@@ -63,3 +63,94 @@ list.files()
 install.packages("filelock")
 q()
 n
 install.packages("filelock")
 q()
 n
+df
+df
+outcome_formula <- y ~ x + z
+outcome_family=gaussian()
+proxy_formula <- w_pred ~ x
+truth_formula <- x ~ z
+params <- start
+ll.y.obs.x0
+ll.y.obs.x1
+rater_formula <- x.obs ~ x
+rater_formula
+rater.modle.matrix.obs.x0
+rater.model.matrix.obs.x0
+names(rater.model.matrix.obs.x0)
+head(rater.model.matrix.obs.x0)
+df.obs
+ll.x.obs.0
+rater.params
+rater.params %*% t(rater.model.matrix.x.obs.0[df.obs$xobs.0==1])
+df.obs$xobs.0==1
+df.obs$x.obs.0==1
+ll.x.obs.0[df.obs$x.obs.0==1]
+rater.model.matrix.x.obs.0[df.obs$x.obs.0==1,]
+df.obs$x.obs.0==1
+n.rater.model.covars <- dim(rater.model.matrix.x.obs.0)[2]
+        rater.params <- params[param.idx:n.rater.model.covars]
+rater.params
+        ll.x.obs.0[df.obs$x.obs.0==1] <- plogis(rater.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.0==1,]), log=TRUE)
+t(rater.model.matrix.x.obs.0[df.obs$x.obs.0==1,]
+)
+dimt(rater.model.matrix.x.obs.0[df.obs$x.obs.0==1,])
+dim(t(rater.model.matrix.x.obs.0[df.obs$x.obs.0==1,]))
+dim(ll.x.obs.0[df.obs$x.obs.0==1])
+rater.params
+rater.params
+rater.params
+rater_formula
+rater.params
+)
+1+1
+q()
+n
+outcome_formula <- y ~ x + z
+proxy_formula <- w_pred ~ x + z + y
+truth_formula <- x ~ z
+proxy_formula
+eyboardio Model 01 - Kaleidoscope locally built
+df <- df.triple.proxy.mle
+outcome_family='gaussian'
+outcome_family=gaussian()
+proxy_formulas=list(proxy_formula,x.obs.0~x, x.obs.1~x)
+proxy_formulas
+proxy_familites <- rep(binomial(link='logit'),3)
+proxy_families = rep(binomial(link='logit'),3)
+proxy_families
+proxy_families = list(binomial(link='logit'),binomial(link='logit'),binomial(link='logit'))
+proxy_families
+proxy_families[[1]]
+proxy.params
+i
+proxy_params
+proxy.params
+params
+params <- start
+df.triple.proxy.mle
+df
+coder.formulas <- c(x.obs.0 ~ x, x.obs.1 ~x)
+outcome.formula
+outcome_formula
+depvar(outcome_formula
+)
+outcome_formula$terms
+terms(outcome_formula)
+q()
+n
+df.triple.proxy.mle
+triple.proxy.mle
+df
+df <- df.triple.proxy
+outcome_family <- binomial(link='logit')
+outcome_formula <- y ~x+z
+proxy_formula <- w_pred ~ y
+coder_formulas=list(y.obs.1~y,y.obs.2~y); proxy_formula=w_pred~y; proxy_family=binomial(link='logit'))
+coder_formulas=list(y.obs.1~y,y.obs.2~y); proxy_formula=w_pred~y; proxy_family=binomial(link='logit')
+coder_formulas=list(y.obs.0~y,y.obs.1~y)
+traceback()
+df
+df
+outcome.model.matrix
+q()
+n
index 3fd6914d7b73d63c9b8bbbfd446eb69e1c92c60d..b8f9317352d5867851503c90b6d538227f829ad1 100644 (file)
@@ -32,7 +32,7 @@ source("simulation_base.R")
 
 simulate_data <- function(N, m, B0=0, Bxy=0.2, Bzy=-0.2, Bzx=0.2, y_explained_variance=0.025, prediction_accuracy=0.73, seed=1){
     set.seed(seed)
 
 simulate_data <- function(N, m, B0=0, Bxy=0.2, Bzy=-0.2, Bzx=0.2, y_explained_variance=0.025, prediction_accuracy=0.73, seed=1){
     set.seed(seed)
-    z <- rbinom(N, 1, 0.5)
+    z <- rnorm(N,sd=0.5)
                                         #    x.var.epsilon <- var(Bzx *z) * ((1-zx_explained_variance)/zx_explained_variance)
     xprime <- Bzx * z #+ x.var.epsilon
     x <- rbinom(N,1,plogis(xprime))
                                         #    x.var.epsilon <- var(Bzx *z) * ((1-zx_explained_variance)/zx_explained_variance)
     xprime <- Bzx * z #+ x.var.epsilon
     x <- rbinom(N,1,plogis(xprime))
@@ -77,7 +77,7 @@ parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy va
 parser <- add_argument(parser, "--truth_formula", help='formula for the true variable', default="x~z")
 parser <- add_argument(parser, "--Bzx", help='Effect of z on x', default=0.3)
 parser <- add_argument(parser, "--Bzy", help='Effect of z on y', default=-0.3)
 parser <- add_argument(parser, "--truth_formula", help='formula for the true variable', default="x~z")
 parser <- add_argument(parser, "--Bzx", help='Effect of z on x', default=0.3)
 parser <- add_argument(parser, "--Bzy", help='Effect of z on y', default=-0.3)
-parser <- add_argument(parser, "--Bxy", help='Effect of z on y', default=0.3)
+parser <- add_argument(parser, "--Bxy", help='Effect of x on y', default=0.3)
 
 args <- parse_args(parser)
 B0 <- 0
 
 args <- parse_args(parser)
 B0 <- 0
@@ -85,23 +85,21 @@ Bxy <- args$Bxy
 Bzy <- args$Bzy
 Bzx <- args$Bzx
 
 Bzy <- args$Bzy
 Bzx <- args$Bzx
 
-if (args$m < args$N){
+df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, Bzx, seed=args$seed + 500, y_explained_variance = args$y_explained_variance,  prediction_accuracy=args$prediction_accuracy)
 
 
-    df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, Bzx, seed=args$seed + 500, y_explained_variance = args$y_explained_variance,  prediction_accuracy=args$prediction_accuracy)
+result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, Bzx=Bzx, 'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'outcome_formula'=args$outcome_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, error='')
 
 
-    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, Bzx=Bzx, 'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'outcome_formula'=args$outcome_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, error='')
-
-    outline <- run_simulation(df, result, outcome_formula=as.formula(args$outcome_formula), proxy_formula=as.formula(args$proxy_formula), truth_formula=as.formula(args$truth_formula))
+outline <- run_simulation(df, result, outcome_formula=as.formula(args$outcome_formula), proxy_formula=as.formula(args$proxy_formula), truth_formula=as.formula(args$truth_formula))
     
     
-    outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE)
-    if(file.exists(args$outfile)){
-        logdata <- read_feather(args$outfile)
-        logdata <- rbind(logdata,as.data.table(outline),fill=TRUE)
-    } else {
-        logdata <- as.data.table(outline)
-    }
-
-    print(outline)
-    write_feather(logdata, args$outfile)
-    unlock(outfile_lock)
+outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE)
+if(file.exists(args$outfile)){
+    logdata <- read_feather(args$outfile)
+    logdata <- rbind(logdata,as.data.table(outline),fill=TRUE)
+} else {
+    logdata <- as.data.table(outline)
 }
 }
+
+print(outline)
+write_feather(logdata, args$outfile)
+unlock(outfile_lock)
+
index bcfad65f8dc63659fd306977fe546ac40d16f660..6e2732f43bbdbdf94c4e9debbafc9b566cae6dab 100644 (file)
@@ -31,11 +31,11 @@ source("simulation_base.R")
 
 ## one way to do it is by adding correlation to x.obs and y that isn't in w.
 ## in other words, the model is missing an important feature of x.obs that's related to y.
 
 ## one way to do it is by adding correlation to x.obs and y that isn't in w.
 ## in other words, the model is missing an important feature of x.obs that's related to y.
-simulate_data <- function(N, m, B0, Bxy, Bzx, Bzy, seed, y_explained_variance=0.025, prediction_accuracy=0.73, y_bias=-0.8,accuracy_imbalance_difference=0.3){
+simulate_data <- function(N, m, B0, Bxy, Bzx, Bzy, seed, y_explained_variance=0.025, prediction_accuracy=0.73, y_bias=-0.8,z_bias=0,accuracy_imbalance_difference=0.3){
     set.seed(seed)
     # make w and y dependent
     set.seed(seed)
     # make w and y dependent
-    z <- rbinom(N, 1, plogis(qlogis(0.5)))
-    x <- rbinom(N, 1, plogis(Bzx * z + qlogis(0.5)))
+    z <- rnorm(N,sd=0.5)
+    x <- rbinom(N, 1, plogis(Bzx * z))
 
     y.var.epsilon <- (var(Bzy * z) + var(Bxy *x) + 2*cov(Bzy*z,Bxy*x)) * ((1-y_explained_variance)/y_explained_variance)
     y.epsilon <- rnorm(N, sd = sqrt(y.var.epsilon))
 
     y.var.epsilon <- (var(Bzy * z) + var(Bxy *x) + 2*cov(Bzy*z,Bxy*x)) * ((1-y_explained_variance)/y_explained_variance)
     y.epsilon <- rnorm(N, sd = sqrt(y.var.epsilon))
@@ -105,8 +105,8 @@ simulate_data <- function(N, m, B0, Bxy, Bzx, Bzy, seed, y_explained_variance=0.
     ## print(mean(df$w_pred == df$x))
 
     resids <- resid(lm(y~x + z))
     ## print(mean(df$w_pred == df$x))
 
     resids <- resid(lm(y~x + z))
-    odds.x1 <- qlogis(prediction_accuracy) + y_bias*qlogis(pnorm(resids[x==1]))
-    odds.x0 <- qlogis(prediction_accuracy,lower.tail=F) + y_bias*qlogis(pnorm(resids[x==0]))
+    odds.x1 <- qlogis(prediction_accuracy) + y_bias*qlogis(pnorm(resids[x==1])) + z_bias * qlogis(pnorm(z,sd(z)))
+    odds.x0 <- qlogis(prediction_accuracy,lower.tail=F) + y_bias*qlogis(pnorm(resids[x==0])) + z_bias * qlogis(pnorm(z,sd(z)))
 
     ## acc.x0 <- p.correct[df[,x==0]]
     ## acc.x1 <- p.correct[df[,x==1]]
 
     ## acc.x0 <- p.correct[df[,x==0]]
     ## acc.x1 <- p.correct[df[,x==1]]
@@ -129,14 +129,15 @@ parser <- add_argument(parser, "--m", default=500, help="m the number of ground
 parser <- add_argument(parser, "--seed", default=51, help='seed for the rng')
 parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather')
 parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.1)
 parser <- add_argument(parser, "--seed", default=51, help='seed for the rng')
 parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather')
 parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.1)
-parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.8)
+parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.75)
 parser <- add_argument(parser, "--accuracy_imbalance_difference", help='how much more accurate is the predictive model for one class than the other?', default=0.3)
 parser <- add_argument(parser, "--Bzx", help='Effect of z on x', default=0.3)
 parser <- add_argument(parser, "--Bzy", help='Effect of z on y', default=-0.3)
 parser <- add_argument(parser, "--Bxy", help='Effect of z on y', default=0.3)
 parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z")
 parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y*z*x")
 parser <- add_argument(parser, "--accuracy_imbalance_difference", help='how much more accurate is the predictive model for one class than the other?', default=0.3)
 parser <- add_argument(parser, "--Bzx", help='Effect of z on x', default=0.3)
 parser <- add_argument(parser, "--Bzy", help='Effect of z on y', default=-0.3)
 parser <- add_argument(parser, "--Bxy", help='Effect of z on y', default=0.3)
 parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z")
 parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y*z*x")
-parser <- add_argument(parser, "--y_bias", help='coefficient of y on the probability a classification is correct', default=-1)
+parser <- add_argument(parser, "--y_bias", help='coefficient of y on the probability a classification is correct', default=-0.5)
+parser <- add_argument(parser, "--z_bias", help='coefficient of z on the probability a classification is correct', default=0)
 parser <- add_argument(parser, "--truth_formula", help='formula for the true variable', default="x~z")
 
 args <- parse_args(parser)
 parser <- add_argument(parser, "--truth_formula", help='formula for the true variable', default="x~z")
 
 args <- parse_args(parser)
index 79a516fd6d3edf9cba19e2270fb007e404c181a6..dde1beec9ec7800d3850947a77000b3ec8187f4f 100644 (file)
@@ -31,13 +31,13 @@ source("simulation_base.R")
 
 ## one way to do it is by adding correlation to x.obs and y that isn't in w.
 ## in other words, the model is missing an important feature of x.obs that's related to y.
 
 ## one way to do it is by adding correlation to x.obs and y that isn't in w.
 ## in other words, the model is missing an important feature of x.obs that's related to y.
-simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, log.likelihood.gain = 0.1){
+simulate_data <- function(N, m, B0, Bxy, Bzy, Bzx, seed, prediction_accuracy=0.73, log.likelihood.gain = 0.1){
     set.seed(seed)
     set.seed(seed)
 
     # make w and y dependent
     set.seed(seed)
     set.seed(seed)
 
     # make w and y dependent
-    z <- rbinom(N, 1, 0.5)
-    x <- rbinom(N, 1, 0.5)
+    z <- rnorm(N, sd=0.5)
+    x <- rbinom(N, 1, plogis(Bzx*z))
 
     ystar <- Bzy * z + Bxy * x + B0
     y <- rbinom(N,1,plogis(ystar))
 
     ystar <- Bzy * z + Bxy * x + B0
     y <- rbinom(N,1,plogis(ystar))
@@ -75,6 +75,7 @@ parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is th
 ## parser <- add_argument(parser, "--x_bias_y0", help='how is the classifier biased when y = 0 ?', default=0.75)
 parser <- add_argument(parser, "--Bxy", help='coefficient of x on y', default=0.01)
 parser <- add_argument(parser, "--Bzy", help='coeffficient of z on y', default=-0.01)
 ## parser <- add_argument(parser, "--x_bias_y0", help='how is the classifier biased when y = 0 ?', default=0.75)
 parser <- add_argument(parser, "--Bxy", help='coefficient of x on y', default=0.01)
 parser <- add_argument(parser, "--Bzy", help='coeffficient of z on y', default=-0.01)
+parser <- add_argument(parser, "--Bzx", help='coeffficient of z on x', default=-0.5)
 parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z")
 parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y")
 
 parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z")
 parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y")
 
@@ -83,13 +84,13 @@ args <- parse_args(parser)
 B0 <- 0
 Bxy <- args$Bxy
 Bzy <- args$Bzy
 B0 <- 0
 Bxy <- args$Bxy
 Bzy <- args$Bzy
-
+Bzx <- args$Bzx
 
 if(args$m < args$N){
 
 if(args$m < args$N){
-    df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, args$seed, args$prediction_accuracy)
+    df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, Bzx, args$seed, args$prediction_accuracy)
 
 #    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'x_bias_y0'=args$x_bias_y0,'x_bias_y1'=args$x_bias_y1,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula)
 
 #    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'x_bias_y0'=args$x_bias_y0,'x_bias_y1'=args$x_bias_y1,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula)
-    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula)
+    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'Bzx'=Bzx,'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula)
 
     outline <- run_simulation_depvar(df, result, outcome_formula = as.formula(args$outcome_formula), proxy_formula = as.formula(args$proxy_formula))
 
 
     outline <- run_simulation_depvar(df, result, outcome_formula = as.formula(args$outcome_formula), proxy_formula = as.formula(args$proxy_formula))
 
index 0d436b6826e154697f341e0bd47a7bdb39da4c30..df0e825d3d91c543bf8b257c6d6fe56fc65027e0 100644 (file)
@@ -31,12 +31,12 @@ source("simulation_base.R")
 
 ## one way to do it is by adding correlation to x.obs and y that isn't in w.
 ## in other words, the model is missing an important feature of x.obs that's related to y.
 
 ## one way to do it is by adding correlation to x.obs and y that isn't in w.
 ## in other words, the model is missing an important feature of x.obs that's related to y.
-simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, x_bias=-0.75){
+simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, z_bias=-0.75){
     set.seed(seed)
 
     # make w and y dependent
     set.seed(seed)
 
     # make w and y dependent
-    z <- rbinom(N, 1, 0.5)
-    x <- rbinom(N, 1, 0.5)
+    z <- rnorm(N,sd=0.5)
+    x <- rbinom(N,1,0.5)
 
     ystar <- Bzy * z + Bxy * x + B0
     y <- rbinom(N,1,plogis(ystar))
 
     ystar <- Bzy * z + Bxy * x + B0
     y <- rbinom(N,1,plogis(ystar))
@@ -51,8 +51,8 @@ simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, x_
         df <- df[, y.obs := y]
     }
     
         df <- df[, y.obs := y]
     }
     
-    odds.y1 <- qlogis(prediction_accuracy) + x_bias*df[y==1]$x
-    odds.y0 <- qlogis(prediction_accuracy,lower.tail=F) + x_bias*df[y==0]$x
+    odds.y1 <- qlogis(prediction_accuracy) + z_bias*df[y==1]$z
+    odds.y0 <- qlogis(prediction_accuracy,lower.tail=F) + z_bias*df[y==0]$z
 
     df[y==0,w:=plogis(rlogis(.N,odds.y0))]
     df[y==1,w:=plogis(rlogis(.N,odds.y1))]
 
     df[y==0,w:=plogis(rlogis(.N,odds.y0))]
     df[y==1,w:=plogis(rlogis(.N,odds.y1))]
@@ -69,16 +69,15 @@ parser <- arg_parser("Simulate data and fit corrected models")
 parser <- add_argument(parser, "--N", default=1000, help="number of observations of w")
 parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations")
 parser <- add_argument(parser, "--seed", default=17, help='seed for the rng')
 parser <- add_argument(parser, "--N", default=1000, help="number of observations of w")
 parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations")
 parser <- add_argument(parser, "--seed", default=17, help='seed for the rng')
-parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather')
-parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.005)
-parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.8)
-## parser <- add_argument(parser, "--x_bias_y1", help='how is the classifier biased when y = 1?', default=-0.75)
-## parser <- add_argument(parser, "--x_bias_y0", help='how is the classifier biased when y = 0 ?', default=0.75)
-parser <- add_argument(parser, "--x_bias", help='how is the classifier biased?', default=0.75)
-parser <- add_argument(parser, "--Bxy", help='coefficient of x on y', default=0.3)
-parser <- add_argument(parser, "--Bzy", help='coeffficient of z on y', default=-0.3)
+parser <- add_argument(parser, "--outfile", help='output file', default='example_4.feather')
+parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.79)
+## parser <- add_argument(parser, "--z_bias_y1", help='how is the classifier biased when y = 1?', default=-0.75)
+## parser <- add_argument(parser, "--z_bias_y0", help='how is the classifier biased when y = 0 ?', default=0.75)
+parser <- add_argument(parser, "--z_bias", help='how is the classifier biased?', default=1.5)
+parser <- add_argument(parser, "--Bxy", help='coefficient of x on y', default=0.1)
+parser <- add_argument(parser, "--Bzy", help='coeffficient of z on y', default=-0.1)
 parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z")
 parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z")
-parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y+x")
+parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y+z")
 
 args <- parse_args(parser)
 
 
 args <- parse_args(parser)
 
@@ -88,10 +87,10 @@ Bzy <- args$Bzy
 
 
 if(args$m < args$N){
 
 
 if(args$m < args$N){
-    df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, args$seed, args$prediction_accuracy, args$x_bias)
+    df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, args$seed, args$prediction_accuracy, args$z_bias)
 
 
-#    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'x_bias_y0'=args$x_bias_y0,'x_bias_y1'=args$x_bias_y1,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula)
-    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'x_bias'=args$x_bias,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula)
+#    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'z_bias_y0'=args$z_bias_y0,'z_bias_y1'=args$z_bias_y1,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula)
+    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'z_bias'=args$z_bias,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula)
 
     outline <- run_simulation_depvar(df, result, outcome_formula = as.formula(args$outcome_formula), proxy_formula = as.formula(args$proxy_formula))
 
 
     outline <- run_simulation_depvar(df, result, outcome_formula = as.formula(args$outcome_formula), proxy_formula = as.formula(args$proxy_formula))
 
index 4c3a109e0d545843dc401d6a44fedab75d4718b7..ebee715ed128ae3c49bdbe09916eff648421b69d 100644 (file)
@@ -39,7 +39,7 @@ simulate_data <- function(N, m, B0=0, Bxy=0.2, Bzy=-0.2, Bzx=0.2, y_explained_va
 
     y.var.epsilon <- (var(Bzy * z) + var(Bxy *x) + 2*cov(Bxy*x,Bzy*z)) * ((1-y_explained_variance)/y_explained_variance)
     y.epsilon <- rnorm(N, sd = sqrt(y.var.epsilon))
 
     y.var.epsilon <- (var(Bzy * z) + var(Bxy *x) + 2*cov(Bxy*x,Bzy*z)) * ((1-y_explained_variance)/y_explained_variance)
     y.epsilon <- rnorm(N, sd = sqrt(y.var.epsilon))
-    y <- Bzy * z + Bxy * x + y.epsilon
+    y <- Bzy * z + Bxy * x + y.epsilon + B0
 
     df <- data.table(x=x,y=y,z=z)
 
 
     df <- data.table(x=x,y=y,z=z)
 
@@ -49,9 +49,12 @@ simulate_data <- function(N, m, B0=0, Bxy=0.2, Bzy=-0.2, Bzx=0.2, y_explained_va
         df <- df[, x.obs := x]
     }
 
         df <- df[, x.obs := x]
     }
 
-    df[ (!is.na(x.obs)) ,x.obs.0 := abs(x.obs - rbinom(.N, 1, 1-coder_accuracy))]
-    df[ (!is.na(x.obs)) ,x.obs.1 := abs(x.obs - rbinom(.N, 1, 1-coder_accuracy))]
-    
+    coder.0.correct <- rbinom(m, 1, coder_accuracy)
+    coder.1.correct <- rbinom(m, 1, coder_accuracy)
+
+    df[!is.na(x.obs),x.obs.0 := as.numeric((x.obs & coder.0.correct) | (!x.obs & !coder.0.correct))]
+    df[!is.na(x.obs),x.obs.1 := as.numeric((x.obs & coder.1.correct) | (!x.obs & !coder.1.correct))]
+
 
     ## how can you make a model with a specific accuracy?
     w0 =(1-x)**2 + (-1)**(1-x) * prediction_accuracy
 
     ## how can you make a model with a specific accuracy?
     w0 =(1-x)**2 + (-1)**(1-x) * prediction_accuracy
@@ -69,21 +72,21 @@ simulate_data <- function(N, m, B0=0, Bxy=0.2, Bzy=-0.2, Bzx=0.2, y_explained_va
 
 parser <- arg_parser("Simulate data and fit corrected models")
 parser <- add_argument(parser, "--N", default=1000, help="number of observations of w")
 
 parser <- arg_parser("Simulate data and fit corrected models")
 parser <- add_argument(parser, "--N", default=1000, help="number of observations of w")
-parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations")
-parser <- add_argument(parser, "--seed", default=57, help='seed for the rng')
+parser <- add_argument(parser, "--m", default=150, help="m the number of ground truth observations")
+parser <- add_argument(parser, "--seed", default=1, help='seed for the rng')
 parser <- add_argument(parser, "--outfile", help='output file', default='example_1.feather')
 parser <- add_argument(parser, "--outfile", help='output file', default='example_1.feather')
-parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.05)
+parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.1)
 # parser <- add_argument(parser, "--zx_explained_variance", help='what proportion of the variance of x can be explained by z?', default=0.3)
 parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.73)
 # parser <- add_argument(parser, "--zx_explained_variance", help='what proportion of the variance of x can be explained by z?', default=0.3)
 parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.73)
-parser <- add_argument(parser, "--coder_accuracy", help='how accurate is the predictive model?', default=0.8)
+parser <- add_argument(parser, "--coder_accuracy", help='how accurate are the human coders?', default=0.85)
 parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z")
 parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~x")
 
 # parser <- add_argument(parser, "--rater_formula", help='formula for the true variable', default="x.obs~x")
 parser <- add_argument(parser, "--truth_formula", help='formula for the true variable', default="x~z")
 parser <- add_argument(parser, "--Bzx", help='Effect of z on x', default=-0.3)
 parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z")
 parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~x")
 
 # parser <- add_argument(parser, "--rater_formula", help='formula for the true variable', default="x.obs~x")
 parser <- add_argument(parser, "--truth_formula", help='formula for the true variable', default="x~z")
 parser <- add_argument(parser, "--Bzx", help='Effect of z on x', default=-0.3)
-parser <- add_argument(parser, "--Bzy", help='Effect of z on y', default=-0.3)
-parser <- add_argument(parser, "--Bxy", help='Effect of z on y', default=0.3)
+parser <- add_argument(parser, "--Bzy", help='Effect of z on y', default=0.27)
+parser <- add_argument(parser, "--Bxy", help='Effect of x on y', default=-0.33)
 
 args <- parse_args(parser)
 B0 <- 0
 
 args <- parse_args(parser)
 B0 <- 0
@@ -93,7 +96,7 @@ Bzx <- args$Bzx
 
 if (args$m < args$N){
 
 
 if (args$m < args$N){
 
-    df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, Bzx, seed=args$seed + 500, y_explained_variance = args$y_explained_variance,  prediction_accuracy=args$prediction_accuracy, coder_accuracy=args$coder_accuracy)
+    df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, Bzx, seed=args$seed, y_explained_variance = args$y_explained_variance,  prediction_accuracy=args$prediction_accuracy, coder_accuracy=args$coder_accuracy)
 
     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, Bzx=Bzx, 'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'outcome_formula'=args$outcome_formula, 'truth_formula'=args$truth_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, 'coder_accuracy'=args$coder_accuracy, error='')
 
 
     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, Bzx=Bzx, 'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'outcome_formula'=args$outcome_formula, 'truth_formula'=args$truth_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, 'coder_accuracy'=args$coder_accuracy, error='')
 
index 0dd13b67d031884f6d30bb1f72f6a0a2134a8729..dd8fa726264e51c6d36eb7aaafd7fd29956f5d48 100644 (file)
@@ -31,14 +31,13 @@ simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, co
 
     df <- data.table(x=x,y=y,ystar=ystar,z=z)
 
 
     df <- data.table(x=x,y=y,ystar=ystar,z=z)
 
-    if(m < N){
-        df <- df[sample(nrow(df), m), y.obs := y]
-    } else {
-        df <- df[, y.obs := y]
-    }
+    df <- df[sample(nrow(df), m), y.obs := y]
     
     
-    df[ (!is.na(y.obs)) ,y.obs.0 := abs(y.obs - rbinom(.N, 1, 1-coder_accuracy))]
-    df[ (!is.na(y.obs)) ,y.obs.1 := abs(y.obs - rbinom(.N, 1, 1-coder_accuracy))]
+    coder.0.correct <- rbinom(m, 1, coder_accuracy)
+    coder.1.correct <- rbinom(m, 1, coder_accuracy)
+    
+    df[!is.na(y.obs),y.obs.0 := as.numeric((.SD$y.obs & coder.0.correct) | (!.SD$y.obs & !coder.0.correct))]
+    df[!is.na(y.obs),y.obs.1 := as.numeric((.SD$y.obs & coder.1.correct) | (!.SD$y.obs & !coder.1.correct))]
 
     odds.y1 <- qlogis(prediction_accuracy)
     odds.y0 <- qlogis(prediction_accuracy,lower.tail=F)
 
     odds.y1 <- qlogis(prediction_accuracy)
     odds.y0 <- qlogis(prediction_accuracy,lower.tail=F)
@@ -48,6 +47,9 @@ simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, co
 
     df[,w_pred := as.integer(w > 0.5)]
 
 
     df[,w_pred := as.integer(w > 0.5)]
 
+    print(mean(df$y == df$y.obs.0,na.rm=T))
+    print(mean(df$y == df$y.obs.1,na.rm=T))
+
     print(mean(df[x==0]$y == df[x==0]$w_pred))
     print(mean(df[x==1]$y == df[x==1]$w_pred))
     print(mean(df$w_pred == df$y))
     print(mean(df[x==0]$y == df[x==0]$w_pred))
     print(mean(df[x==1]$y == df[x==1]$w_pred))
     print(mean(df$w_pred == df$y))
@@ -55,18 +57,18 @@ simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, co
 }
 
 parser <- arg_parser("Simulate data and fit corrected models")
 }
 
 parser <- arg_parser("Simulate data and fit corrected models")
-parser <- add_argument(parser, "--N", default=1000, help="number of observations of w")
+parser <- add_argument(parser, "--N", default=5000, help="number of observations of w")
 parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations")
 parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations")
-parser <- add_argument(parser, "--seed", default=17, help='seed for the rng')
+parser <- add_argument(parser, "--seed", default=16, help='seed for the rng')
 parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather')
 parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather')
-parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.005)
-parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.72)
+parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.1)
+parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.73)
 ## parser <- add_argument(parser, "--x_bias_y1", help='how is the classifier biased when y = 1?', default=-0.75)
 ## parser <- add_argument(parser, "--x_bias_y0", help='how is the classifier biased when y = 0 ?', default=0.75)
 parser <- add_argument(parser, "--Bxy", help='coefficient of x on y', default=0.3)
 parser <- add_argument(parser, "--Bzy", help='coeffficient of z on y', default=-0.3)
 parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z")
 ## parser <- add_argument(parser, "--x_bias_y1", help='how is the classifier biased when y = 1?', default=-0.75)
 ## parser <- add_argument(parser, "--x_bias_y0", help='how is the classifier biased when y = 0 ?', default=0.75)
 parser <- add_argument(parser, "--Bxy", help='coefficient of x on y', default=0.3)
 parser <- add_argument(parser, "--Bzy", help='coeffficient of z on y', default=-0.3)
 parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z")
-parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y")
+parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y+y.obs.1+y.obs.0")
 parser <- add_argument(parser, "--coder_accuracy", help='How accurate are the coders?', default=0.8)
 
 args <- parse_args(parser)
 parser <- add_argument(parser, "--coder_accuracy", help='How accurate are the coders?', default=0.8)
 
 args <- parse_args(parser)
@@ -76,24 +78,24 @@ Bxy <- args$Bxy
 Bzy <- args$Bzy
 
 
 Bzy <- args$Bzy
 
 
-if(args$m < args$N){
-    df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, args$seed, args$prediction_accuracy, args$coder_accuracy)
-
-#    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'x_bias_y0'=args$x_bias_y0,'x_bias_y1'=args$x_bias_y1,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula)
-    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula)
+df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, args$seed, args$prediction_accuracy, args$coder_accuracy)
 
 
-    outline <- run_simulation_depvar(df, result, outcome_formula = as.formula(args$outcome_formula), proxy_formula = as.formula(args$proxy_formula))
+                                        #    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'x_bias_y0'=args$x_bias_y0,'x_bias_y1'=args$x_bias_y1,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula)
+result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula)
 
 
-    outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE)
+outline <- run_simulation_depvar(df, result, outcome_formula = as.formula(args$outcome_formula), proxy_formula = as.formula(args$proxy_formula))
 
 
-    if(file.exists(args$outfile)){
-        logdata <- read_feather(args$outfile)
-        logdata <- rbind(logdata,as.data.table(outline),fill=TRUE)
-    } else {
-        logdata <- as.data.table(outline)
-    }
+outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE)
 
 
-    print(outline)
-    write_feather(logdata, args$outfile)
-    unlock(outfile_lock)
+if(file.exists(args$outfile)){
+    logdata <- read_feather(args$outfile)
+    logdata <- rbind(logdata,as.data.table(outline),fill=TRUE)
+} else {
+    logdata <- as.data.table(outline)
 }
 }
+
+print(outline)
+write_feather(logdata, args$outfile)
+unlock(outfile_lock)
+
+warnings()
index af54727127fbef6f3a961e329d7a8f57fa495624..b3ab77a3c62d773b5b577940c8e1e373bac955d5 100644 (file)
@@ -1,9 +1,9 @@
 
 SHELL=bash
 
 
 SHELL=bash
 
-Ns=[1000, 2000, 4000]
-ms=[100, 200, 400, 800]
-seeds=[$(shell seq -s, 1 250)]
+Ns=[1000, 5000, 10000]
+ms=[100, 200, 400]
+seeds=[$(shell seq -s, 1 500)]
 explained_variances=[0.1]
 
 all:remembr.RDS remember_irr.RDS
 explained_variances=[0.1]
 
 all:remembr.RDS remember_irr.RDS
@@ -23,21 +23,28 @@ joblists:example_1_jobs example_2_jobs example_3_jobs
 #      sbatch --wait --verbose --array=3001-6001 run_simulation.sbatch 0 test_true_z_jobs
 
 
 #      sbatch --wait --verbose --array=3001-6001 run_simulation.sbatch 0 test_true_z_jobs
 
 
-example_1_jobs: 01_two_covariates.R simulation_base.R grid_sweep.py
-       sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 01_two_covariates.R" --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["example_1.feather"], "y_explained_variance":${explained_variances}, "Bzx":[0.3]}' --outfile example_1_jobs
+example_1_jobs: 01_two_covariates.R simulation_base.R grid_sweep.py pl_methods.R
+       sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 01_two_covariates.R" --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["example_1.feather"], "y_explained_variance":${explained_variances}, "Bzx":[1]}' --outfile example_1_jobs
 
 example_1.feather: example_1_jobs 
        rm -f example_1.feather
 
 example_1.feather: example_1_jobs 
        rm -f example_1.feather
-       sbatch --wait --verbose --array=1-$(shell cat example_1_jobs | wc -l) run_simulation.sbatch 0 example_1_jobs
-#      sbatch --wait --verbose --array=3001-6001 run_simulation.sbatch 0 example_1_jobs
+       sbatch --wait --verbose --array=1-1000  run_simulation.sbatch 0 example_1_jobs
+       sbatch --wait --verbose --array=1001-2000  run_simulation.sbatch 0 example_1_jobs
+       sbatch --wait --verbose --array=2001-3000  run_simulation.sbatch 0 example_1_jobs
+       sbatch --wait --verbose --array=3001-4000  run_simulation.sbatch 0 example_1_jobs
+       sbatch --wait --verbose --array=4001-$(shell cat example_1_jobs | wc -l)  run_simulation.sbatch 0 example_1_jobs
 
 
-example_2_jobs: 02_indep_differential.R simulation_base.R grid_sweep.py
-       sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 02_indep_differential.R" --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["example_2.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y*z*x"]}' --outfile example_2_jobs
+example_2_jobs: 02_indep_differential.R simulation_base.R grid_sweep.py pl_methods.R
+       sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 02_indep_differential.R" --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["example_2.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y*z*x"]}' --outfile example_2_jobs
 
 example_2.feather: example_2_jobs 
        rm -f example_2.feather
 
 example_2.feather: example_2_jobs 
        rm -f example_2.feather
-       sbatch --wait --verbose --array=1-$(shell cat example_1_jobs | wc -l) run_simulation.sbatch 0 example_2_jobs
-#      sbatch --wait --verbose --array=3001-6001 run_simulation.sbatch 0 example_2_jobs
+       sbatch --wait --verbose --array=1-1000  run_simulation.sbatch 0 example_2_jobs
+       sbatch --wait --verbose --array=1001-2000  run_simulation.sbatch 0 example_2_jobs
+       sbatch --wait --verbose --array=2001-3000  run_simulation.sbatch 0 example_2_jobs
+       sbatch --wait --verbose --array=3001-4000  run_simulation.sbatch 0 example_2_jobs
+       sbatch --wait --verbose --array=4001-$(shell cat example_2_jobs | wc -l)  run_simulation.sbatch 0 example_2_jobs
+
 
 # example_2_B_jobs: example_2_B.R
 #      sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript example_2_B.R" --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["example_2_B.feather"]}' --outfile example_2_B_jobs
 
 # example_2_B_jobs: example_2_B.R
 #      sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript example_2_B.R" --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["example_2_B.feather"]}' --outfile example_2_B_jobs
@@ -46,19 +53,28 @@ example_2.feather: example_2_jobs
 #      rm -f example_2_B.feather
 #      sbatch --wait --verbose --array=1-3000 run_simulation.sbatch 0 example_2_B_jobs
 
 #      rm -f example_2_B.feather
 #      sbatch --wait --verbose --array=1-3000 run_simulation.sbatch 0 example_2_B_jobs
 
-example_3_jobs: 03_depvar.R simulation_base.R grid_sweep.py
-       sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 03_depvar.R" --arg_dict '{"N":${Ns},"m":${ms}, "Bxy":[0.01],"Bzy":[-0.01],"seed":${seeds}, "outfile":["example_3.feather"], "y_explained_variance":${explained_variances}}' --outfile example_3_jobs
+example_3_jobs: 03_depvar.R simulation_base.R grid_sweep.py pl_methods.R
+       sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 03_depvar.R" --arg_dict '{"N":${Ns},"m":${ms}, "Bxy":[0.7],"Bzy":[-0.7],"seed":${seeds}, "outfile":["example_3.feather"], "y_explained_variance":${explained_variances}}' --outfile example_3_jobs
 
 example_3.feather: example_3_jobs
        rm -f example_3.feather 
 
 example_3.feather: example_3_jobs
        rm -f example_3.feather 
-       sbatch --wait --verbose --array=1-$(shell cat example_3_jobs | wc -l)  run_simulation.sbatch 0 example_3_jobs
+       sbatch --wait --verbose --array=1-1000  run_simulation.sbatch 0 example_3_jobs
+       sbatch --wait --verbose --array=1001-2000  run_simulation.sbatch 0 example_3_jobs
+       sbatch --wait --verbose --array=2001-3000  run_simulation.sbatch 0 example_3_jobs
+       sbatch --wait --verbose --array=3001-4000  run_simulation.sbatch 0 example_3_jobs
+       sbatch --wait --verbose --array=4001-$(shell cat example_3_jobs | wc -l)  run_simulation.sbatch 0 example_3_jobs
 
 
-example_4_jobs: 04_depvar_differential.R simulation_base.R grid_sweep.py
-       sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 04_depvar_differential.R" --arg_dict '{"N":${Ns},"Bxy":[0.01],"Bzy":[-0.01],"m":${ms}, "seed":${seeds}, "outfile":["example_4.feather"], "y_explained_variance":${explained_variances}}' --outfile example_4_jobs
+example_4_jobs: 04_depvar_differential.R simulation_base.R grid_sweep.py pl_methods.R
+       sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 04_depvar_differential.R" --arg_dict '{"N":${Ns},"Bxy":[0.7],"Bzy":[-0.7],"m":${ms}, "seed":${seeds}, "outfile":["example_4.feather"], "z_bias":[0.5]}' --outfile example_4_jobs
 
 example_4.feather: example_4_jobs
        rm -f example_4.feather 
 
 example_4.feather: example_4_jobs
        rm -f example_4.feather 
-       sbatch --wait --verbose --array=1-$(shell cat example_4_jobs | wc -l)  run_simulation.sbatch 0 example_4_jobs
+       sbatch --wait --verbose --array=1-1000  run_simulation.sbatch 0 example_4_jobs
+       sbatch --wait --verbose --array=1001-2000  run_simulation.sbatch 0 example_4_jobs
+       sbatch --wait --verbose --array=2001-3000  run_simulation.sbatch 0 example_4_jobs
+       sbatch --wait --verbose --array=3001-4000  run_simulation.sbatch 0 example_4_jobs
+       sbatch --wait --verbose --array=4001-$(shell cat example_4_jobs | wc -l)  run_simulation.sbatch 0 example_4_jobs
+
 
 
 remembr.RDS:example_1.feather example_2.feather example_3.feather example_4.feather plot_example.R plot_dv_example.R summarize_estimator.R
 
 
 remembr.RDS:example_1.feather example_2.feather example_3.feather example_4.feather plot_example.R plot_dv_example.R summarize_estimator.R
@@ -69,30 +85,39 @@ remembr.RDS:example_1.feather example_2.feather example_3.feather example_4.feat
        ${srun} Rscript plot_dv_example.R --infile example_4.feather --name "plot.df.example.4"
 
 
        ${srun} Rscript plot_dv_example.R --infile example_4.feather --name "plot.df.example.4"
 
 
-irr_Ns = ${Ns}
-irr_ms = ${ms}
+irr_Ns = [1000]
+irr_ms = [150,300,600]
 irr_seeds=${seeds}
 irr_explained_variances=${explained_variances}
 irr_seeds=${seeds}
 irr_explained_variances=${explained_variances}
+irr_coder_accuracy=[0.80]
 
 
-example_5_jobs: 05_irr_indep.R irr_simulation_base.R grid_sweep.py
-       sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 05_irr_indep.R" --arg_dict '{"N":${irr_Ns},"m":${irr_ms}, "seed":${irr_seeds}, "outfile":["example_5.feather"], "y_explained_variance":${irr_explained_variances}}' --outfile example_5_jobs
+example_5_jobs: 05_irr_indep.R irr_simulation_base.R grid_sweep.py pl_methods.R measerr_methods.R
+       sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 05_irr_indep.R" --arg_dict '{"N":${irr_Ns},"m":${irr_ms}, "seed":${irr_seeds}, "outfile":["example_5.feather"], "y_explained_variance":${irr_explained_variances}, "coder_accuracy":${irr_coder_accuracy}}' --outfile example_5_jobs
 
 example_5.feather:example_5_jobs
        rm -f example_5.feather
 
 example_5.feather:example_5_jobs
        rm -f example_5.feather
-       sbatch --wait --verbose --array=1-$(shell cat example_5_jobs | wc -l)  run_simulation.sbatch 0 example_5_jobs
+       sbatch --wait --verbose --array=1-1000  run_simulation.sbatch 0 example_5_jobs
+       sbatch --wait --verbose --array=1001-$(shell cat example_5_jobs | wc -l)  run_simulation.sbatch 1000 example_5_jobs
+       # sbatch --wait --verbose --array=2001-3000  run_simulation.sbatch 2000 example_5_jobs
+       # sbatch --wait --verbose --array=3001-4000  run_simulation.sbatch 3000 example_5_jobs
+       # sbatch --wait --verbose --array=2001-$(shell cat example_5_jobs | wc -l)  run_simulation.sbatch 4000 example_5_jobs
+
+
 
 
+# example_6_jobs: 06_irr_dv.R irr_dv_simulation_base.R grid_sweep.py pl_methods.R
+#      sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 06_irr_dv.R" --arg_dict '{"N":${irr_Ns},"m":${irr_ms}, "seed":${irr_seeds}, "outfile":["example_6.feather"], "y_explained_variance":${irr_explained_variances},"coder_accuracy":${irr_coder_accuracy}}' --outfile example_6_jobs
 
 
-example_6_jobs: 06_irr_dv.R irr_dv_simulation_base.R grid_sweep.py
-       sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 06_irr_dv.R" --arg_dict '{"N":${irr_Ns},"m":${irr_ms}, "seed":${irr_seeds}, "outfile":["example_6.feather"], "y_explained_variance":${irr_explained_variances}}' --outfile example_6_jobs
+# example_6.feather:example_6_jobs
+#      rm -f example_6.feather
+#      sbatch --wait --verbose --array=1-1000  run_simulation.sbatch 0 example_6_jobs
+#      sbatch --wait --verbose --array=1001-2000  run_simulation.sbatch 1000 example_6_jobs
+#      sbatch --wait --verbose --array=2001-$(shell cat example_6_jobs | wc -l)  run_simulation.sbatch 2000 example_6_jobs
 
 
-example_6.feather:example_6_jobs
-       rm -f example_6.feather
-       sbatch --wait --verbose --array=1-$(shell cat example_6_jobs | wc -l)  run_simulation.sbatch 0 example_6_jobs
 
 
-remember_irr.RDS: example_5.feather example_6.feather plot_irr_example.R plot_irr_dv_example.R summarize_estimator.R
+remember_irr.RDS: example_5.feather plot_irr_example.R plot_irr_dv_example.R summarize_estimator.R
        rm -f remember_irr.RDS
        sbatch --wait --verbose run_job.sbatch Rscript plot_irr_example.R --infile example_5.feather --name "plot.df.example.5"
        rm -f remember_irr.RDS
        sbatch --wait --verbose run_job.sbatch Rscript plot_irr_example.R --infile example_5.feather --name "plot.df.example.5"
-       sbatch --wait --verbose run_job.sbatch Rscript plot_irr_dv_example.R --infile example_6.feather --name "plot.df.example.6"
+#      sbatch --wait --verbose run_job.sbatch Rscript plot_irr_dv_example.R --infile example_6.feather --name "plot.df.example.6"
 
 
 
 
 
 
diff --git a/simulations/example_2_B.feather b/simulations/example_2_B.feather
deleted file mode 100644 (file)
index 8d0ecbd..0000000
Binary files a/simulations/example_2_B.feather and /dev/null differ
index f1309150255a940c3ca8f0ce3b7ee97b71ff8472..a6d8b197866f0570f5d785fac014a0842ddfdf14 100644 (file)
Binary files a/simulations/example_3.feather and b/simulations/example_3.feather differ
index 059473c629e961de0a3d215002fb3e9e6c0c81ab..3263322cd8c0613279464cdb7c6420b06c6b3707 100644 (file)
@@ -4,23 +4,47 @@ options(amelia.parallel="no",
         amelia.ncpus=1)
 library(Amelia)
 
         amelia.ncpus=1)
 library(Amelia)
 
-source("measerr_methods.R") ## for my more generic function.
+source("pl_methods.R")
+source("measerr_methods_2.R") ## for my more generic function.
 
 
-run_simulation_depvar <- function(df, result, outcome_formula = y ~ x + z, rater_formula = y.obs ~ x, proxy_formula = w_pred ~ y){
-
-    accuracy <- df[,mean(w_pred==y)]
+run_simulation_depvar <- function(df, result, outcome_formula = y ~ x + z, coder_formulas = list(y.obs.0 ~ 1, y.obs.1 ~ 1), proxy_formula = w_pred ~ y.obs.1+y.obs.0+y){
+    (accuracy <- df[,mean(w_pred==y)])
     result <- append(result, list(accuracy=accuracy))
     result <- append(result, list(accuracy=accuracy))
+    (error.cor.z <- cor(df$x, df$w_pred - df$z))
+    (error.cor.x <- cor(df$x, df$w_pred - df$y))
+    (error.cor.y <- cor(df$y, df$y - df$w_pred))
+    result <- append(result, list(error.cor.x = error.cor.x,
+                                  error.cor.z = error.cor.z,
+                                  error.cor.y = error.cor.y))
+
+    model.null <- glm(y~1, data=df,family=binomial(link='logit'))
+    (model.true <- glm(y ~ x + z, data=df,family=binomial(link='logit')))
+    (lik.ratio <- exp(logLik(model.true) - logLik(model.null)))
 
 
-    (model.true <- glm(y ~ x + z, data=df, family=binomial(link='logit')))
     true.ci.Bxy <- confint(model.true)['x',]
     true.ci.Bzy <- confint(model.true)['z',]
 
     true.ci.Bxy <- confint(model.true)['x',]
     true.ci.Bzy <- confint(model.true)['z',]
 
+
+    result <- append(result, list(lik.ratio=lik.ratio))
+
     result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
                                   Bzy.est.true=coef(model.true)['z'],
                                   Bxy.ci.upper.true = true.ci.Bxy[2],
                                   Bxy.ci.lower.true = true.ci.Bxy[1],
                                   Bzy.ci.upper.true = true.ci.Bzy[2],
                                   Bzy.ci.lower.true = true.ci.Bzy[1]))
     result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
                                   Bzy.est.true=coef(model.true)['z'],
                                   Bxy.ci.upper.true = true.ci.Bxy[2],
                                   Bxy.ci.lower.true = true.ci.Bxy[1],
                                   Bzy.ci.upper.true = true.ci.Bzy[2],
                                   Bzy.ci.lower.true = true.ci.Bzy[1]))
+                                  
+    (model.naive <- lm(y~w_pred+z, data=df))
+    
+    naive.ci.Bxy <- confint(model.naive)['w_pred',]
+    naive.ci.Bzy <- confint(model.naive)['z',]
+
+    result <- append(result, list(Bxy.est.naive=coef(model.naive)['w_pred'],
+                                  Bzy.est.naive=coef(model.naive)['z'],
+                                  Bxy.ci.upper.naive = naive.ci.Bxy[2],
+                                  Bxy.ci.lower.naive = naive.ci.Bxy[1],
+                                  Bzy.ci.upper.naive = naive.ci.Bzy[2],
+                                  Bzy.ci.lower.naive = naive.ci.Bzy[1]))
 
 
 
 
 
 
@@ -37,20 +61,20 @@ run_simulation_depvar <- function(df, result, outcome_formula = y ~ x + z, rater
                                   Bzy.ci.lower.loa0.feasible = loa0.ci.Bzy[1]))
 
 
                                   Bzy.ci.lower.loa0.feasible = loa0.ci.Bzy[1]))
 
 
-    df.loa0.mle <- copy(df)
-    df.loa0.mle[,y:=y.obs.0]
-    loa0.mle <- measerr_mle_dv(df.loa0.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula)
-    fisher.info <- solve(loa0.mle$hessian)
-    coef <- loa0.mle$par
-    ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
-    ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
+    ## df.loa0.mle <- copy(df)
+    ## df.loa0.mle[,y:=y.obs.0]
+    ## loa0.mle <- measerr_mle_dv(df.loa0.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula)
+    ## fisher.info <- solve(loa0.mle$hessian)
+    ## coef <- loa0.mle$par
+    ## ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
+    ## ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
 
 
-    result <- append(result, list(Bxy.est.loa0.mle=coef['x'],
-                                  Bzy.est.loa0.mle=coef['z'],
-                                  Bxy.ci.upper.loa0.mle = ci.upper['x'],
-                                  Bxy.ci.lower.loa0.mle = ci.lower['x'],
-                                  Bzy.ci.upper.loa0.mle = ci.upper['z'],
-                                  Bzy.ci.lower.loa0.mle = ci.upper['z']))
+    ## result <- append(result, list(Bxy.est.loa0.mle=coef['x'],
+    ##                               Bzy.est.loa0.mle=coef['z'],
+    ##                               Bxy.ci.upper.loa0.mle = ci.upper['x'],
+    ##                               Bxy.ci.lower.loa0.mle = ci.lower['x'],
+    ##                               Bzy.ci.upper.loa0.mle = ci.upper['z'],
+    ##                               Bzy.ci.lower.loa0.mle = ci.upper['z']))
 
     loco.feasible <- glm(y.obs.0 ~ x + z, data = df[(!is.na(y.obs.0)) & (y.obs.1 == y.obs.0)], family=binomial(link='logit'))
 
 
     loco.feasible <- glm(y.obs.0 ~ x + z, data = df[(!is.na(y.obs.0)) & (y.obs.1 == y.obs.0)], family=binomial(link='logit'))
 
@@ -64,29 +88,110 @@ run_simulation_depvar <- function(df, result, outcome_formula = y ~ x + z, rater
                                   Bzy.ci.upper.loco.feasible = loco.feasible.ci.Bzy[2],
                                   Bzy.ci.lower.loco.feasible = loco.feasible.ci.Bzy[1]))
 
                                   Bzy.ci.upper.loco.feasible = loco.feasible.ci.Bzy[2],
                                   Bzy.ci.lower.loco.feasible = loco.feasible.ci.Bzy[1]))
 
+    
+    ## df.double.proxy <- copy(df)
+    ## df.double.proxy <- df.double.proxy[,y.obs:=NA]
+    ## df.double.proxy <- df.double.proxy[,y:=NA]
+    
+    ## double.proxy.mle <- measerr_irr_mle_dv(df.double.proxy, outcome_formula=y~x+z, outcome_family=binomial(link='logit'), coder_formulas=list(y.obs.0 ~ y),  proxy_formula=w_pred ~ y.obs.0 + y, proxy_family=binomial(link='logit'))
+    ## print(double.proxy.mle$hessian)
+    ## fisher.info <- solve(double.proxy.mle$hessian)
+    ## coef <- double.proxy.mle$par
+    ## ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
+    ## ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
+
+    ## result <- append(result, list(Bxy.est.double.proxy=coef['x'],
+    ##                               Bzy.est.double.proxy=coef['z'],
+    ##                               Bxy.ci.upper.double.proxy = ci.upper['x'],
+    ##                               Bxy.ci.lower.double.proxy = ci.lower['x'],
+    ##                               Bzy.ci.upper.double.proxy = ci.upper['z'],
+    ##                               Bzy.ci.lower.double.proxy = ci.lower['z']))
+
 
 
-    df.loco.mle <- copy(df)
-    df.loco.mle[,y.obs:=NA]
-    df.loco.mle[(y.obs.0)==(y.obs.1),y.obs:=y.obs.0]
-    df.loco.mle[,y.true:=y]
-    df.loco.mle[,y:=y.obs]
-    print(df.loco.mle[!is.na(y.obs.1),mean(y.true==y,na.rm=TRUE)])
-    loco.mle <- measerr_mle_dv(df.loco.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula)
-    fisher.info <- solve(loco.mle$hessian)
-    coef <- loco.mle$par
+    df.triple.proxy <- copy(df)
+    df.triple.proxy <- df.triple.proxy[,y.obs:=NA]
+    df.triple.proxy <- df.triple.proxy[,y:=NA]
+    
+    triple.proxy.mle <- measerr_irr_mle_dv(df.triple.proxy, outcome_formula=outcome_formula, outcome_family=binomial(link='logit'), coder_formulas=coder_formulas, proxy_formula=proxy_formula, proxy_family=binomial(link='logit'))
+    print(triple.proxy.mle$hessian)
+    fisher.info <- solve(triple.proxy.mle$hessian)
+    print(fisher.info)
+    coef <- triple.proxy.mle$par
     ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
     ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
 
     ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
     ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
 
-    result <- append(result, list(Bxy.est.loco.mle=coef['x'],
-                                  Bzy.est.loco.mle=coef['z'],
-                                  Bxy.ci.upper.loco.mle = ci.upper['x'],
-                                  Bxy.ci.lower.loco.mle = ci.lower['x'],
-                                  Bzy.ci.upper.loco.mle = ci.upper['z'],
-                                  Bzy.ci.lower.loco.mle = ci.lower['z']))
+    result <- append(result, list(Bxy.est.triple.proxy=coef['x'],
+                                  Bzy.est.triple.proxy=coef['z'],
+                                  Bxy.ci.upper.triple.proxy = ci.upper['x'],
+                                  Bxy.ci.lower.triple.proxy = ci.lower['x'],
+                                  Bzy.ci.upper.triple.proxy = ci.upper['z'],
+                                  Bzy.ci.lower.triple.proxy = ci.lower['z']))
+
+    ## df.loco.mle <- copy(df)
+    ## df.loco.mle[,y.obs:=NA]
+    ## df.loco.mle[(y.obs.0)==(y.obs.1),y.obs:=y.obs.0]
+    ## df.loco.mle[,y.true:=y]
+    ## df.loco.mle[,y:=y.obs]
+    ## print(df.loco.mle[!is.na(y.obs.1),mean(y.true==y,na.rm=TRUE)])
+    ## loco.mle <- measerr_mle_dv(df.loco.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula)
+    ## fisher.info <- solve(loco.mle$hessian)
+    ## coef <- loco.mle$par
+    ## ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
+    ## ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
+
+    ## result <- append(result, list(Bxy.est.loco.mle=coef['x'],
+    ##                               Bzy.est.loco.mle=coef['z'],
+    ##                               Bxy.ci.upper.loco.mle = ci.upper['x'],
+    ##                               Bxy.ci.lower.loco.mle = ci.lower['x'],
+    ##                               Bzy.ci.upper.loco.mle = ci.upper['z'],
+    ##                               Bzy.ci.lower.loco.mle = ci.lower['z']))
+
+
 
 
-    print(rater_formula)
-    print(proxy_formula)
+    ## my implementatoin of liklihood based correction
+    mod.zhang <- zhang.mle.dv(df.loco.mle)
+    coef <- coef(mod.zhang)
+    ci <- confint(mod.zhang,method='quad')
+
+    result <- append(result,
+                     list(Bxy.est.zhang = coef['Bxy'],
+                          Bxy.ci.upper.zhang = ci['Bxy','97.5 %'],
+                          Bxy.ci.lower.zhang = ci['Bxy','2.5 %'],
+                          Bzy.est.zhang = coef['Bzy'],
+                          Bzy.ci.upper.zhang = ci['Bzy','97.5 %'],
+                          Bzy.ci.lower.zhang = ci['Bzy','2.5 %']))
+
+    
 
 
+    print(df.loco.mle)
+
+    # amelia says use normal distribution for binary variables.
+    tryCatch({
+        amelia.out.k <- amelia(df.loco.mle, m=200, p2s=0, idvars=c('y','ystar','w','y.obs.1','y.obs.0','y.true'))
+        mod.amelia.k <- zelig(y.obs~x+z, model='ls', data=amelia.out.k$imputations, cite=FALSE)
+        (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
+        est.x.mi <- coefse['x','Estimate']
+        est.x.se <- coefse['x','Std.Error']
+        result <- append(result,
+                         list(Bxy.est.amelia.full = est.x.mi,
+                              Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
+                              Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se
+                              ))
+
+        est.z.mi <- coefse['z','Estimate']
+        est.z.se <- coefse['z','Std.Error']
+
+        result <- append(result,
+                         list(Bzy.est.amelia.full = est.z.mi,
+                              Bzy.ci.upper.amelia.full = est.z.mi + 1.96 * est.z.se,
+                              Bzy.ci.lower.amelia.full = est.z.mi - 1.96 * est.z.se
+                              ))
+
+    },
+    error = function(e){
+        message("An error occurred:\n",e)
+        result$error <- paste0(result$error,'\n', e)
+    })
     ## mle.irr <- measerr_irr_mle( df, outcome_formula = outcome_formula, rater_formula = rater_formula, proxy_formula=proxy_formula, truth_formula=truth_formula)
 
     ## fisher.info <- solve(mle.irr$hessian)
     ## mle.irr <- measerr_irr_mle( df, outcome_formula = outcome_formula, rater_formula = rater_formula, proxy_formula=proxy_formula, truth_formula=truth_formula)
 
     ## fisher.info <- solve(mle.irr$hessian)
index ee7112a233fcc9f72c185f991e320682891c62f1..f16c96b2594dfd7944a63c317dad7652e282b58f 100644 (file)
@@ -3,10 +3,10 @@ library(matrixStats) # for numerically stable logsumexps
 options(amelia.parallel="no",
         amelia.ncpus=1)
 library(Amelia)
 options(amelia.parallel="no",
         amelia.ncpus=1)
 library(Amelia)
+source("measerr_methods.R")
+source("pl_methods.R")
 
 
-source("measerr_methods.R") ## for my more generic function.
-
-run_simulation <- function(df, result, outcome_formula = y ~ x + z, proxy_formula = w_pred ~ x, truth_formula = x ~ z){
+run_simulation <- function(df, result, outcome_formula = y ~ x + z, proxy_formula = w_pred ~ x, coder_formulas=list(x.obs.1~x, x.obs.0~x), truth_formula = x ~ z){
 
     accuracy <- df[,mean(w_pred==x)]
     result <- append(result, list(accuracy=accuracy))
 
     accuracy <- df[,mean(w_pred==x)]
     result <- append(result, list(accuracy=accuracy))
@@ -24,6 +24,8 @@ run_simulation <- function(df, result, outcome_formula = y ~ x + z, proxy_formul
 
 
 
 
 
 
+
+
     loa0.feasible <- lm(y ~ x.obs.0 + z, data = df[!(is.na(x.obs.1))])
 
     loa0.ci.Bxy <- confint(loa0.feasible)['x.obs.0',]
     loa0.feasible <- lm(y ~ x.obs.0 + z, data = df[!(is.na(x.obs.1))])
 
     loa0.ci.Bxy <- confint(loa0.feasible)['x.obs.0',]
@@ -35,7 +37,7 @@ run_simulation <- function(df, result, outcome_formula = y ~ x + z, proxy_formul
                                   Bxy.ci.lower.loa0.feasible = loa0.ci.Bxy[1],
                                   Bzy.ci.upper.loa0.feasible = loa0.ci.Bzy[2],
                                   Bzy.ci.lower.loa0.feasible = loa0.ci.Bzy[1]))
                                   Bxy.ci.lower.loa0.feasible = loa0.ci.Bxy[1],
                                   Bzy.ci.upper.loa0.feasible = loa0.ci.Bzy[2],
                                   Bzy.ci.lower.loa0.feasible = loa0.ci.Bzy[1]))
-
+    print("fitting loa0 model")
 
     df.loa0.mle <- copy(df)
     df.loa0.mle[,x:=x.obs.0]
 
     df.loa0.mle <- copy(df)
     df.loa0.mle[,x:=x.obs.0]
@@ -52,8 +54,11 @@ run_simulation <- function(df, result, outcome_formula = y ~ x + z, proxy_formul
                                   Bzy.ci.upper.loa0.mle = ci.upper['z'],
                                   Bzy.ci.lower.loa0.mle = ci.upper['z']))
 
                                   Bzy.ci.upper.loa0.mle = ci.upper['z'],
                                   Bzy.ci.lower.loa0.mle = ci.upper['z']))
 
+
+
     loco.feasible <- lm(y ~ x.obs.1 + z, data = df[(!is.na(x.obs.1)) & (x.obs.1 == x.obs.0)])
 
     loco.feasible <- lm(y ~ x.obs.1 + z, data = df[(!is.na(x.obs.1)) & (x.obs.1 == x.obs.0)])
 
+
     loco.feasible.ci.Bxy <- confint(loco.feasible)['x.obs.1',]
     loco.feasible.ci.Bzy <- confint(loco.feasible)['z',]
 
     loco.feasible.ci.Bxy <- confint(loco.feasible)['x.obs.1',]
     loco.feasible.ci.Bzy <- confint(loco.feasible)['z',]
 
@@ -65,41 +70,152 @@ run_simulation <- function(df, result, outcome_formula = y ~ x + z, proxy_formul
                                   Bzy.ci.lower.loco.feasible = loco.feasible.ci.Bzy[1]))
 
 
                                   Bzy.ci.lower.loco.feasible = loco.feasible.ci.Bzy[1]))
 
 
+    (model.naive <- lm(y~w_pred+z, data=df))
+    
+    naive.ci.Bxy <- confint(model.naive)['w_pred',]
+    naive.ci.Bzy <- confint(model.naive)['z',]
+
+    result <- append(result, list(Bxy.est.naive=coef(model.naive)['w_pred'],
+                                  Bzy.est.naive=coef(model.naive)['z'],
+                                  Bxy.ci.upper.naive = naive.ci.Bxy[2],
+                                  Bxy.ci.lower.naive = naive.ci.Bxy[1],
+                                  Bzy.ci.upper.naive = naive.ci.Bzy[2],
+                                  Bzy.ci.lower.naive = naive.ci.Bzy[1]))
+                                  
+    print("fitting loco model")
+
     df.loco.mle <- copy(df)
     df.loco.mle[,x.obs:=NA]
     df.loco.mle[(x.obs.0)==(x.obs.1),x.obs:=x.obs.0]
     df.loco.mle[,x.true:=x]
     df.loco.mle[,x:=x.obs]
     print(df.loco.mle[!is.na(x.obs.1),mean(x.true==x,na.rm=TRUE)])
     df.loco.mle <- copy(df)
     df.loco.mle[,x.obs:=NA]
     df.loco.mle[(x.obs.0)==(x.obs.1),x.obs:=x.obs.0]
     df.loco.mle[,x.true:=x]
     df.loco.mle[,x:=x.obs]
     print(df.loco.mle[!is.na(x.obs.1),mean(x.true==x,na.rm=TRUE)])
+    loco.accuracy <- df.loco.mle[(!is.na(x.obs.1)) & (x.obs.1 == x.obs.0),mean(x.obs.1 == x.true)]    
     loco.mle <- measerr_mle(df.loco.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula, truth_formula=truth_formula)
     fisher.info <- solve(loco.mle$hessian)
     coef <- loco.mle$par
     ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
     ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
 
     loco.mle <- measerr_mle(df.loco.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula, truth_formula=truth_formula)
     fisher.info <- solve(loco.mle$hessian)
     coef <- loco.mle$par
     ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
     ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
 
-    result <- append(result, list(Bxy.est.loco.mle=coef['x'],
+    result <- append(result, list(loco.accuracy=loco.accuracy,
+                                  Bxy.est.loco.mle=coef['x'],
                                   Bzy.est.loco.mle=coef['z'],
                                   Bxy.ci.upper.loco.mle = ci.upper['x'],
                                   Bxy.ci.lower.loco.mle = ci.lower['x'],
                                   Bzy.ci.upper.loco.mle = ci.upper['z'],
                                   Bzy.ci.lower.loco.mle = ci.lower['z']))
 
                                   Bzy.est.loco.mle=coef['z'],
                                   Bxy.ci.upper.loco.mle = ci.upper['x'],
                                   Bxy.ci.lower.loco.mle = ci.lower['x'],
                                   Bzy.ci.upper.loco.mle = ci.upper['z'],
                                   Bzy.ci.lower.loco.mle = ci.lower['z']))
 
-    ## print(rater_formula)
-    ## print(proxy_formula)
-    ## mle.irr <- measerr_irr_mle( df, outcome_formula = outcome_formula, rater_formula = rater_formula, proxy_formula=proxy_formula, truth_formula=truth_formula)
+    df.double.proxy.mle <- copy(df)
+    df.double.proxy.mle[,x.obs:=NA]
+    print("fitting double proxy model")
+
+    double.proxy.mle <- measerr_irr_mle(df.double.proxy.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula, coder_formulas=coder_formulas[1], truth_formula=truth_formula)
+    fisher.info <- solve(double.proxy.mle$hessian)
+    coef <- double.proxy.mle$par
+    ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
+    ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
+
+    result <- append(result, list(
+                                  Bxy.est.double.proxy=coef['x'],
+                                  Bzy.est.double.proxy=coef['z'],
+                                  Bxy.ci.upper.double.proxy = ci.upper['x'],
+                                  Bxy.ci.lower.double.proxy = ci.lower['x'],
+                                  Bzy.ci.upper.double.proxy = ci.upper['z'],
+                                  Bzy.ci.lower.double.proxy = ci.lower['z']))
+
+    df.triple.proxy.mle <- copy(df)
+    df.triple.proxy.mle[,x.obs:=NA]
+
+    print("fitting triple proxy model")
+    triple.proxy.mle <- measerr_irr_mle(df.triple.proxy.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula, coder_formulas=coder_formulas, truth_formula=truth_formula)
+    fisher.info <- solve(triple.proxy.mle$hessian)
+    coef <- triple.proxy.mle$par
+    ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
+    ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
+
+    result <- append(result, list(
+                                  Bxy.est.triple.proxy=coef['x'],
+                                  Bzy.est.triple.proxy=coef['z'],
+                                  Bxy.ci.upper.triple.proxy = ci.upper['x'],
+                                  Bxy.ci.lower.triple.proxy = ci.lower['x'],
+                                  Bzy.ci.upper.triple.proxy = ci.upper['z'],
+                                  Bzy.ci.lower.triple.proxy = ci.lower['z']))
+    tryCatch({
+    amelia.out.k <- amelia(df.loco.mle, m=200, p2s=0, idvars=c('x.true','w','x.obs.1','x.obs.0','x'))
+    mod.amelia.k <- zelig(y~x.obs+z, model='ls', data=amelia.out.k$imputations, cite=FALSE)
+    (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
+
+    est.x.mi <- coefse['x.obs','Estimate']
+    est.x.se <- coefse['x.obs','Std.Error']
+    result <- append(result,
+                     list(Bxy.est.amelia.full = est.x.mi,
+                          Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
+                          Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se
+                          ))
+
+    est.z.mi <- coefse['z','Estimate']
+    est.z.se <- coefse['z','Std.Error']
+
+    result <- append(result,
+                     list(Bzy.est.amelia.full = est.z.mi,
+                          Bzy.ci.upper.amelia.full = est.z.mi + 1.96 * est.z.se,
+                          Bzy.ci.lower.amelia.full = est.z.mi - 1.96 * est.z.se
+                          ))
+
+    },
+    error = function(e){
+        message("An error occurred:\n",e)
+        result$error <-paste0(result$error,'\n', e)
+    }
+    )
+
+    tryCatch({
+
+        mod.zhang.lik <- zhang.mle.iv(df.loco.mle)
+        coef <- coef(mod.zhang.lik)
+        ci <- confint(mod.zhang.lik,method='quad')
+        result <- append(result,
+                         list(Bxy.est.zhang = coef['Bxy'],
+                              Bxy.ci.upper.zhang = ci['Bxy','97.5 %'],
+                              Bxy.ci.lower.zhang = ci['Bxy','2.5 %'],
+                              Bzy.est.zhang = coef['Bzy'],
+                              Bzy.ci.upper.zhang = ci['Bzy','97.5 %'],
+                              Bzy.ci.lower.zhang = ci['Bzy','2.5 %']))
+    },
+
+    error = function(e){
+        message("An error occurred:\n",e)
+        result$error <- paste0(result$error,'\n', e)
+    })
+
+    df <- df.loco.mle
+    N <- nrow(df)
+    m <- nrow(df[!is.na(x.obs)])
+    p <- v <- train <- rep(0,N)
+    M <- m
+    p[(M+1):(N)] <- 1
+    v[1:(M)] <- 1
+    df <- df[order(x.obs)]
+    y <- df[,y]
+    x <- df[,x.obs]
+    z <- df[,z]
+    w <- df[,w_pred]
+    # gmm gets pretty close
+    (gmm.res <- predicted_covariates(y, x, z, w, v, train, p, max_iter=100, verbose=TRUE))
+
+    result <- append(result,
+                     list(Bxy.est.gmm = gmm.res$beta[1,1],
+                          Bxy.ci.upper.gmm = gmm.res$confint[1,2],
+                          Bxy.ci.lower.gmm = gmm.res$confint[1,1],
+                          gmm.ER_pval = gmm.res$ER_pval
+                          ))
+
+    result <- append(result,
+                     list(Bzy.est.gmm = gmm.res$beta[2,1],
+                          Bzy.ci.upper.gmm = gmm.res$confint[2,2],
+                          Bzy.ci.lower.gmm = gmm.res$confint[2,1]))
+
 
 
-    ## fisher.info <- solve(mle.irr$hessian)
-    ## coef <- mle.irr$par
-    ## ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
-    ## ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
-    
-    ## result <- append(result,
-    ##                  list(Bxy.est.mle = coef['x'],
-    ##                       Bxy.ci.upper.mle = ci.upper['x'],
-    ##                       Bxy.ci.lower.mle = ci.lower['x'],
-    ##                       Bzy.est.mle = coef['z'],
-    ##                       Bzy.ci.upper.mle = ci.upper['z'],
-    ##                       Bzy.ci.lower.mle = ci.lower['z']))
 
     return(result)
 
 
     return(result)
 
index 087c6084052a0a327277b1e0c32ade67a3b35c80..63f8bc19df116b2f6d148c55cefbd89cf2dc7b85 100644 (file)
@@ -1,5 +1,6 @@
 library(formula.tools)
 library(matrixStats)
 library(formula.tools)
 library(matrixStats)
+library(optimx)
 library(bbmle)
 ## df: dataframe to model
 ## outcome_formula: formula for y | x, z
 library(bbmle)
 ## df: dataframe to model
 ## outcome_formula: formula for y | x, z
@@ -113,227 +114,18 @@ measerr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='lo
     return(fit)
 }
 
     return(fit)
 }
 
-## Experimental, and not necessary if errors are independent.
-measerr_irr_mle <- function(df, outcome_formula, outcome_family=gaussian(), rater_formula, proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit'),method='optim'){
 
 
-    ### in this scenario, the ground truth also has measurement error, but we have repeated measures for it. 
+measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit'),method='optim'){
 
 
-    ## probability of y given observed data.
-    df.obs <- df[!is.na(x.obs.1)]
+    df.obs <- model.frame(outcome_formula, df)
+    response.var <- all.vars(outcome_formula)[1]
     proxy.variable <- all.vars(proxy_formula)[1]
     proxy.variable <- all.vars(proxy_formula)[1]
-    df.x.obs.1 <- copy(df.obs)[,x:=1]
-    df.x.obs.0 <- copy(df.obs)[,x:=0]
-    y.obs <- df.obs[,y]
-
-    nll <- function(params){
-        outcome.model.matrix.x.obs.0 <- model.matrix(outcome_formula, df.x.obs.0)
-        outcome.model.matrix.x.obs.1 <- model.matrix(outcome_formula, df.x.obs.1)
-
-        param.idx <- 1
-        n.outcome.model.covars <- dim(outcome.model.matrix.x.obs.0)[2]
-        outcome.params <- params[param.idx:n.outcome.model.covars]
-        param.idx <- param.idx + n.outcome.model.covars
-
-        sigma.y <- params[param.idx]
-        param.idx <- param.idx + 1
-
-        ll.y.x.obs.0 <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix.x.obs.0),sd=sigma.y, log=TRUE)
-        ll.y.x.obs.1 <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix.x.obs.1),sd=sigma.y, log=TRUE)
-
-        ## assume that the two coders are statistically independent conditional on x
-        ll.x.obs.0.x0 <- vector(mode='numeric', length=nrow(df.obs))
-        ll.x.obs.1.x0 <- vector(mode='numeric', length=nrow(df.obs))
-        ll.x.obs.0.x1 <- vector(mode='numeric', length=nrow(df.obs))
-        ll.x.obs.1.x1 <- vector(mode='numeric', length=nrow(df.obs))
-
-        rater.model.matrix.x.obs.0 <- model.matrix(rater_formula, df.x.obs.0)
-        rater.model.matrix.x.obs.1 <- model.matrix(rater_formula, df.x.obs.1)
-
-        n.rater.model.covars <- dim(rater.model.matrix.x.obs.0)[2]
-        rater.0.params <- params[param.idx:(n.rater.model.covars + param.idx - 1)]
-        param.idx <- param.idx + n.rater.model.covars
-
-        rater.1.params <- params[param.idx:(n.rater.model.covars + param.idx - 1)]
-        param.idx <- param.idx + n.rater.model.covars
-        
-        # probability of rater 0 if x is 0 or 1
-        ll.x.obs.0.x0[df.obs$x.obs.0==1] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.0==1,]), log=TRUE)
-        ll.x.obs.0.x0[df.obs$x.obs.0==0] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.0==0,]), log=TRUE, lower.tail=FALSE)
-        ll.x.obs.0.x1[df.obs$x.obs.0==1] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.0==1,]), log=TRUE)
-        ll.x.obs.0.x1[df.obs$x.obs.0==0] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.0==0,]), log=TRUE, lower.tail=FALSE)
-
-        # probability of rater 1 if x is 0 or 1
-        ll.x.obs.1.x0[df.obs$x.obs.1==1] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.1==1,]), log=TRUE)
-        ll.x.obs.1.x0[df.obs$x.obs.1==0] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.1==0,]), log=TRUE, lower.tail=FALSE)
-        ll.x.obs.1.x1[df.obs$x.obs.1==1] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.1==1,]), log=TRUE)
-        ll.x.obs.1.x1[df.obs$x.obs.1==0] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.1==0,]), log=TRUE, lower.tail=FALSE)
-
-        proxy.model.matrix.x0 <- model.matrix(proxy_formula, df.x.obs.0)
-        proxy.model.matrix.x1 <- model.matrix(proxy_formula, df.x.obs.1)
-
-        n.proxy.model.covars <- dim(proxy.model.matrix.x0)[2]
-        proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)]
-        param.idx <- param.idx + n.proxy.model.covars
-
-        proxy.obs <- with(df.obs, eval(parse(text=proxy.variable)))
-
-        if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
-            ll.w.obs.x0 <- vector(mode='numeric',length=dim(proxy.model.matrix.x0)[1])
-            ll.w.obs.x1 <- vector(mode='numeric',length=dim(proxy.model.matrix.x1)[1])
-
-                                        # proxy_formula likelihood using logistic regression
-            ll.w.obs.x0[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.obs==1,]),log=TRUE)
-            ll.w.obs.x0[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.obs==0,]),log=TRUE, lower.tail=FALSE)
-
-            ll.w.obs.x1[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.obs==1,]),log=TRUE)
-            ll.w.obs.x1[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.obs==0,]),log=TRUE, lower.tail=FALSE)
-        }
-
-        ## assume that the probability of x is a logistic regression depending on z
-        truth.model.matrix.obs <- model.matrix(truth_formula, df.obs)
-        n.truth.params <- dim(truth.model.matrix.obs)[2]
-        truth.params <- params[param.idx:(n.truth.params + param.idx - 1)]
-
-        ll.obs.x0 <- plogis(truth.params %*% t(truth.model.matrix.obs), log=TRUE)
-        ll.obs.x1 <- plogis(truth.params %*% t(truth.model.matrix.obs), log=TRUE, lower.tail=FALSE)
-
-        ll.obs <- colLogSumExps(rbind(ll.y.x.obs.0 + ll.x.obs.0.x0 + ll.x.obs.1.x0 + ll.obs.x0 + ll.w.obs.x0,
-                                      ll.y.x.obs.1 + ll.x.obs.0.x1 + ll.x.obs.1.x1 + ll.obs.x1 + ll.w.obs.x1))
-
-        ### NOW FOR THE FUN PART. Likelihood of the unobserved data.
-        ### we have to integrate out x.obs.0, x.obs.1, and x.
-
-
-        ## THE OUTCOME
-        df.unobs <- df[is.na(x.obs)]
-        df.x.unobs.0 <- copy(df.unobs)[,x:=0]
-        df.x.unobs.1 <- copy(df.unobs)[,x:=1]
-        y.unobs <- df.unobs$y
-
-        outcome.model.matrix.x.unobs.0 <- model.matrix(outcome_formula, df.x.unobs.0)
-        outcome.model.matrix.x.unobs.1 <- model.matrix(outcome_formula, df.x.unobs.1)
-
-        ll.y.unobs.x0 <- dnorm(y.unobs, outcome.params %*% t(outcome.model.matrix.x.unobs.0), sd=sigma.y, log=TRUE)
-        ll.y.unobs.x1 <- dnorm(y.unobs, outcome.params %*% t(outcome.model.matrix.x.unobs.1), sd=sigma.y, log=TRUE)
-
-        
-        ## THE UNLABELED DATA
-
-        
-        ## assume that the two coders are statistically independent conditional on x
-        ll.x.unobs.0.x0 <- vector(mode='numeric', length=nrow(df.unobs))
-        ll.x.unobs.1.x0 <- vector(mode='numeric', length=nrow(df.unobs))
-        ll.x.unobs.0.x1 <- vector(mode='numeric', length=nrow(df.unobs))
-        ll.x.unobs.1.x1 <- vector(mode='numeric', length=nrow(df.unobs))
-        
-        df.x.unobs.0[,x.obs := 1]
-        df.x.unobs.1[,x.obs := 1]
-
-        rater.model.matrix.x.unobs.0 <- model.matrix(rater_formula, df.x.unobs.0)
-        rater.model.matrix.x.unobs.1 <- model.matrix(rater_formula, df.x.unobs.1)
-
-         
-        ## # probability of rater 0 if x is 0 or 1
-        ## ll.x.unobs.0.x0 <- colLogSumExps(rbind(plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE),
-        ##                                      plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE, lower.tail=TRUE)))
-
-        ## ll.x.unobs.0.x1 <- colLogSumExps(rbind(plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE),
-        ##                                        plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE, lower.tail=TRUE)))
-
-        ## # probability of rater 1 if x is 0 or 1
-        ## ll.x.unobs.1.x0 <- colLogSumExps(rbind(plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE),
-        ##                                      plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE, lower.tail=TRUE)))
-
-        ## ll.x.unobs.1.x1 <- colLogSumExps(rbind(plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE),
-        ##                                      plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE, lower.tail=TRUE)))
-
-
-        proxy.unobs <- with(df.unobs, eval(parse(text=proxy.variable)))
-        proxy.model.matrix.x0.unobs <- model.matrix(proxy_formula, df.x.unobs.0)
-        proxy.model.matrix.x1.unobs <- model.matrix(proxy_formula, df.x.unobs.1)
-
-        if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
-            ll.w.unobs.x0 <- vector(mode='numeric',length=dim(proxy.model.matrix.x0)[1])
-            ll.w.unobs.x1 <- vector(mode='numeric',length=dim(proxy.model.matrix.x1)[1])
-
-
-                                        # proxy_formula likelihood using logistic regression
-            ll.w.unobs.x0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0.unobs[proxy.unobs==1,]),log=TRUE)
-            ll.w.unobs.x0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x0.unobs[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE)
-
-            ll.w.unobs.x1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1.unobs[proxy.unobs==1,]),log=TRUE)
-            ll.w.unobs.x1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x1.unobs[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE)
-        }
-
-        truth.model.matrix.unobs <- model.matrix(truth_formula, df.unobs)
-
-        ll.unobs.x0 <- plogis(truth.params %*% t(truth.model.matrix.unobs), log=TRUE)
-        ll.unobs.x1 <- plogis(truth.params %*% t(truth.model.matrix.unobs), log=TRUE, lower.tail=FALSE)
-
-        ll.unobs <- colLogSumExps(rbind(ll.unobs.x0 + ll.w.unobs.x0 + ll.y.unobs.x0,
-                                        ll.unobs.x1 + ll.w.unobs.x1 + ll.y.unobs.x1))
-
-        return(-1 *( sum(ll.obs) + sum(ll.unobs)))
-    }
-
-    outcome.params <- colnames(model.matrix(outcome_formula,df))
-    lower <- rep(-Inf, length(outcome.params))
-
-    if(outcome_family$family=='gaussian'){
-        params <- c(outcome.params, 'sigma_y')
-        lower <- c(lower, 0.00001)
-    } else {
-        params <- outcome.params
-    }
-    
-    rater.0.params <- colnames(model.matrix(rater_formula,df))
-    params <- c(params, paste0('rater_0',rater.0.params))
-    lower <- c(lower, rep(-Inf, length(rater.0.params)))
-
-    rater.1.params <- colnames(model.matrix(rater_formula,df))
-    params <- c(params, paste0('rater_1',rater.1.params))
-    lower <- c(lower, rep(-Inf, length(rater.1.params)))
-
-    proxy.params <- colnames(model.matrix(proxy_formula, df))
-    params <- c(params, paste0('proxy_',proxy.params))
-    lower <- c(lower, rep(-Inf, length(proxy.params)))
-
-    truth.params <- colnames(model.matrix(truth_formula, df))
-    params <- c(params, paste0('truth_', truth.params))
-    lower <- c(lower, rep(-Inf, length(truth.params)))
-    start <- rep(0.1,length(params))
-    names(start) <- params
-    
-    
-    if(method=='optim'){
-        fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6))
-    } else {
-                
-        quoted.names <- gsub("[\\(\\)]",'',names(start))
-        print(quoted.names)
-        text <- paste("function(", paste0(quoted.names,'=',start,collapse=','),"){params<-c(",paste0(quoted.names,collapse=','),");return(nll(params))}")
-
-        measerr_mle_nll <- eval(parse(text=text))
-        names(start) <- quoted.names
-        names(lower) <- quoted.names
-        fit <- mle2(minuslogl=measerr_mle_nll, start=start, lower=lower, parnames=params,control=list(maxit=1e6),method='L-BFGS-B')
-    }
-
-    return(fit)
-}
-
-
-measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit'),method='optim'){
+    truth.variable <- all.vars(truth_formula)[1]
+    outcome.model.matrix <- model.matrix(outcome_formula, df)
+    proxy.model.matrix <- model.matrix(proxy_formula, df)
+    y.obs <- with(df.obs,eval(parse(text=response.var)))
 
     measerr_mle_nll <- function(params){
 
     measerr_mle_nll <- function(params){
-        df.obs <- model.frame(outcome_formula, df)
-        proxy.variable <- all.vars(proxy_formula)[1]
-        proxy.model.matrix <- model.matrix(proxy_formula, df)
-        response.var <- all.vars(outcome_formula)[1]
-        y.obs <- with(df.obs,eval(parse(text=response.var)))
-
-        outcome.model.matrix <- model.matrix(outcome_formula, df)
-
         param.idx <- 1
         n.outcome.model.covars <- dim(outcome.model.matrix)[2]
         outcome.params <- params[param.idx:n.outcome.model.covars]
         param.idx <- 1
         n.outcome.model.covars <- dim(outcome.model.matrix)[2]
         outcome.params <- params[param.idx:n.outcome.model.covars]
@@ -343,7 +135,6 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo
         if(outcome_family$family == "gaussian"){
             sigma.y <- params[param.idx]
             param.idx <- param.idx + 1
         if(outcome_family$family == "gaussian"){
             sigma.y <- params[param.idx]
             param.idx <- param.idx + 1
-
                                         #  outcome_formula likelihood using linear regression
             ll.y.obs <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix),sd=sigma.y, log=TRUE)
         }
                                         #  outcome_formula likelihood using linear regression
             ll.y.obs <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix),sd=sigma.y, log=TRUE)
         }
@@ -363,7 +154,7 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo
         }
 
         df.obs <- model.frame(truth_formula, df)
         }
 
         df.obs <- model.frame(truth_formula, df)
-        truth.variable <- all.vars(truth_formula)[1]
+
         truth.obs <- with(df.obs, eval(parse(text=truth.variable)))
         truth.model.matrix <- model.matrix(truth_formula,df)
         n.truth.model.covars <- dim(truth.model.matrix)[2]
         truth.obs <- with(df.obs, eval(parse(text=truth.variable)))
         truth.model.matrix <- model.matrix(truth_formula,df)
         n.truth.model.covars <- dim(truth.model.matrix)[2]
@@ -468,3 +259,338 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo
     return(fit)
 }
 
     return(fit)
 }
 
+## Experimental, but probably works. 
+measerr_irr_mle <- function(df, outcome_formula, outcome_family=gaussian(), coder_formulas=list(x.obs.0~x, x.obs.1~x), proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit'),method='optim'){
+
+    ### in this scenario, the ground truth also has measurement error, but we have repeated measures for it. 
+    # this time we never get to observe the true X
+    outcome.model.matrix <- model.matrix(outcome_formula, df)
+    proxy.model.matrix <- model.matrix(proxy_formula, df)
+    response.var <- all.vars(outcome_formula)[1]
+    proxy.var <- all.vars(proxy_formula)[1]
+    param.var <- all.vars(truth_formula)[1]
+    truth.var<- all.vars(truth_formula)[1]
+    y <- with(df,eval(parse(text=response.var)))
+
+    nll <- function(params){
+        param.idx <- 1
+        n.outcome.model.covars <- dim(outcome.model.matrix)[2]
+        outcome.params <- params[param.idx:n.outcome.model.covars]
+        param.idx <- param.idx + n.outcome.model.covars
+
+
+        if(outcome_family$family == "gaussian"){
+            sigma.y <- params[param.idx]
+            param.idx <- param.idx + 1
+        }
+
+
+        n.proxy.model.covars <- dim(proxy.model.matrix)[2]
+        proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)]
+        param.idx <- param.idx + n.proxy.model.covars
+        
+        df.temp <- copy(df)
+
+        if((truth_family$family == "binomial")
+           & (truth_family$link=='logit')){
+            integrate.grid <- expand.grid(replicate(1 + length(coder_formulas), c(0,1), simplify=FALSE))
+            ll.parts <- matrix(nrow=nrow(df),ncol=nrow(integrate.grid))
+            for(i in 1:nrow(integrate.grid)){
+                # setup the dataframe for this row
+                row <- integrate.grid[i,]
+
+                df.temp[[param.var]] <- row[[1]]
+                ci <- 2
+                for(coder_formula in coder_formulas){
+                    coder.var <- all.vars(coder_formula)[1]
+                    df.temp[[coder.var]] <- row[[ci]]
+                    ci <- ci + 1 
+                }
+                
+                outcome.model.matrix <- model.matrix(outcome_formula, df.temp)                
+                if(outcome_family$family == "gaussian"){
+                    ll.y <- dnorm(y, outcome.params %*% t(outcome.model.matrix), sd=sigma.y, log=TRUE)
+                }
+
+                if(proxy_family$family=="binomial" & (proxy_family$link=='logit')){
+                    proxy.model.matrix <- model.matrix(proxy_formula, df.temp)
+                    ll.w <- vector(mode='numeric', length=dim(proxy.model.matrix)[1])
+                    proxyvar <- with(df.temp,eval(parse(text=proxy.var)))
+                    ll.w[proxyvar==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxyvar==1,]),log=TRUE)
+                    ll.w[proxyvar==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxyvar==0,]),log=TRUE,lower.tail=FALSE)
+                }
+
+                ## probability of the coded variables
+                coder.lls <- matrix(nrow=nrow(df.temp),ncol=length(coder_formulas))
+                ci <- 1
+                for(coder_formula in coder_formulas){
+                    coder.model.matrix <- model.matrix(coder_formula, df.temp)
+                    n.coder.model.covars <- dim(coder.model.matrix)[2]
+                    coder.params <- params[param.idx:(n.coder.model.covars + param.idx - 1)]
+                    param.idx <- param.idx + n.coder.model.covars
+                    coder.var <- all.vars(coder_formula)[1]
+                    x.obs <- with(df.temp, eval(parse(text=coder.var)))
+                    true.codervar <- df[[all.vars(coder_formula)[1]]]
+
+                    ll.coder <- vector(mode='numeric', length=dim(coder.model.matrix)[1])
+                    ll.coder[x.obs==1] <- plogis(coder.params %*% t(coder.model.matrix[x.obs==1,]),log=TRUE)
+                    ll.coder[x.obs==0] <- plogis(coder.params %*% t(coder.model.matrix[x.obs==0,]),log=TRUE,lower.tail=FALSE)
+
+                    # don't count when we know the observed value, unless we're accounting for observed value
+                    ll.coder[(!is.na(true.codervar)) & (true.codervar != x.obs)] <- NA
+                    coder.lls[,ci] <- ll.coder
+                    ci <- ci + 1
+                }
+                
+                truth.model.matrix <- model.matrix(truth_formula, df.temp)
+                n.truth.model.covars <- dim(truth.model.matrix)[2]
+                truth.params <- params[param.idx:(n.truth.model.covars + param.idx - 1)]
+
+                for(coder_formula in coder_formulas){
+                    coder.model.matrix <- model.matrix(coder_formula, df.temp)
+                    n.coder.model.covars <- dim(coder.model.matrix)[2]
+                    param.idx <- param.idx - n.coder.model.covars
+                }
+
+                x <- with(df.temp, eval(parse(text=truth.var)))
+                ll.truth <- vector(mode='numeric', length=dim(truth.model.matrix)[1])
+                ll.truth[x==1] <- plogis(truth.params %*% t(truth.model.matrix[x==1,]), log=TRUE)
+                ll.truth[x==0] <- plogis(truth.params %*% t(truth.model.matrix[x==0,]), log=TRUE, lower.tail=FALSE)
+
+                true.truthvar <- df[[all.vars(truth_formula)[1]]]
+                
+                if(!is.null(true.truthvar)){
+                                        # ll.truth[(!is.na(true.truthvar)) & (true.truthvar != truthvar)] <- -Inf
+                    # ll.truth[(!is.na(true.truthvar)) & (true.truthvar == truthvar)] <- 0
+                }
+                ll.parts[,i] <- ll.y + ll.w + apply(coder.lls,1,sum) + ll.truth
+                
+            }
+
+            lls <- rowLogSumExps(ll.parts,na.rm=TRUE)
+
+        ## likelihood of observed data 
+            target <- -1 * sum(lls)
+            return(target)
+        }
+    }
+        
+    outcome.params <- colnames(model.matrix(outcome_formula,df))
+    lower <- rep(-Inf, length(outcome.params))
+
+    if(outcome_family$family=='gaussian'){
+        params <- c(outcome.params, 'sigma_y')
+        lower <- c(lower, 0.00001)
+    } else {
+        params <- outcome.params
+    }
+
+    proxy.params <- colnames(model.matrix(proxy_formula, df))
+    params <- c(params, paste0('proxy_',proxy.params))
+    positive.params <- paste0('proxy_',truth.var)
+    lower <- c(lower, rep(-Inf, length(proxy.params)))
+    names(lower) <- params
+    lower[positive.params] <- 0.01
+    ci <- 0
+    
+    for(coder_formula in coder_formulas){
+        coder.params <- colnames(model.matrix(coder_formula,df))
+        params <- c(params, paste0('coder_',ci,coder.params))
+        positive.params <- paste0('coder_', ci, truth.var)
+        ci <- ci + 1
+        lower <- c(lower, rep(-Inf, length(coder.params)))
+        names(lower) <- params
+        lower[positive.params] <- 0.01
+    }
+
+    truth.params <- colnames(model.matrix(truth_formula, df))
+    params <- c(params, paste0('truth_', truth.params))
+    lower <- c(lower, rep(-Inf, length(truth.params)))
+    start <- rep(0.1,length(params))
+    names(start) <- params
+    names(lower) <- params
+    
+    if(method=='optim'){
+        print(start)
+        fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6))
+    } else {
+                
+        quoted.names <- gsub("[\\(\\)]",'',names(start))
+        print(quoted.names)
+        text <- paste("function(", paste0(quoted.names,'=',start,collapse=','),"){params<-c(",paste0(quoted.names,collapse=','),");return(nll(params))}")
+
+        measerr_mle_nll <- eval(parse(text=text))
+        names(start) <- quoted.names
+        names(lower) <- quoted.names
+        fit <- mle2(minuslogl=measerr_mle_nll, start=start, lower=lower, method='L-BFGS-B',control=list(maxit=1e6))
+    }
+
+    return(fit)
+}
+
+## Experimental, and does not work.
+measerr_irr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='logit'), coder_formulas=list(y.obs.0~y+w_pred+y.obs.1,y.obs.1~y+w_pred+y.obs.0), proxy_formula=w_pred~y, proxy_family=binomial(link='logit'),method='optim'){
+    integrate.grid <- expand.grid(replicate(1 + length(coder_formulas), c(0,1), simplify=FALSE))
+    print(integrate.grid)
+
+
+    outcome.model.matrix <- model.matrix(outcome_formula, df)
+    n.outcome.model.covars <- dim(outcome.model.matrix)[2]
+
+
+    ### in this scenario, the ground truth also has measurement error, but we have repeated measures for it. 
+    # this time we never get to observe the true X
+    nll <- function(params){
+        param.idx <- 1
+        outcome.params <- params[param.idx:n.outcome.model.covars]
+        param.idx <- param.idx + n.outcome.model.covars
+        proxy.model.matrix <- model.matrix(proxy_formula, df)
+        n.proxy.model.covars <- dim(proxy.model.matrix)[2]
+        response.var <- all.vars(outcome_formula)[1]
+
+        if(outcome_family$family == "gaussian"){
+            sigma.y <- params[param.idx]
+            param.idx <- param.idx + 1
+        }
+
+        proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)]
+        param.idx <- param.idx + n.proxy.model.covars
+
+        df.temp <- copy(df)
+
+        if((outcome_family$family == "binomial")
+           & (outcome_family$link=='logit')){
+            ll.parts <- matrix(nrow=nrow(df),ncol=nrow(integrate.grid))
+            for(i in 1:nrow(integrate.grid)){
+                # setup the dataframe for this row
+                row <- integrate.grid[i,]
+
+                df.temp[[response.var]] <- row[[1]]
+                ci <- 2
+                for(coder_formula in coder_formulas){
+                    codervar <- all.vars(coder_formula)[1]
+                    df.temp[[codervar]] <- row[[ci]]
+                    ci <- ci + 1 
+                }
+                
+                outcome.model.matrix <- model.matrix(outcome_formula, df.temp)                
+                if(outcome_family$family == "gaussian"){
+                    ll.y <- dnorm(df.temp[[response.var]], outcome.params %*% t(outcome.model.matrix), sd=sigma.y, log=T)
+                }
+
+                if(outcome_family$family == "binomial" & (outcome_family$link=='logit')){
+                    ll.y <- vector(mode='numeric',length=nrow(df.temp))
+                    ll.y[df.temp[[response.var]]==1] <- plogis( outcome.params %*% t(outcome.model.matrix), log=TRUE)
+                    ll.y[df.temp[[response.var]]==0] <- plogis( outcome.params %*% t(outcome.model.matrix), log=TRUE,lower.tail=FALSE)
+                }
+
+                if(proxy_family$family=="binomial" & (proxy_family$link=='logit')){
+                    proxy.model.matrix <- model.matrix(proxy_formula, df.temp)
+                    ll.w <- vector(mode='numeric', length=dim(proxy.model.matrix)[1])
+                    proxyvar <- with(df.temp,eval(parse(text=all.vars(proxy_formula)[1])))
+                    ll.w[proxyvar==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxyvar==1,]),log=TRUE)
+                    ll.w[proxyvar==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxyvar==0,]),log=TRUE,lower.tail=FALSE)
+                }
+
+                ## probability of the coded variables
+                coder.lls <- matrix(nrow=nrow(df.temp),ncol=length(coder_formulas))
+                ci <- 1
+                for(coder_formula in coder_formulas){
+                    coder.model.matrix <- model.matrix(coder_formula, df.temp)
+                    n.coder.model.covars <- dim(coder.model.matrix)[2]
+                    coder.params <- params[param.idx:(n.coder.model.covars + param.idx - 1)]
+                    param.idx <- param.idx + n.coder.model.covars
+                    codervar <- with(df.temp, eval(parse(text=all.vars(coder_formula)[1])))
+                    true.codervar <- df[[all.vars(coder_formula)[1]]]
+
+                    ll.coder <- vector(mode='numeric', length=dim(coder.model.matrix)[1])
+                    ll.coder[codervar==1] <- plogis(coder.params %*% t(coder.model.matrix[codervar==1,]),log=TRUE)
+                    ll.coder[codervar==0] <- plogis(coder.params %*% t(coder.model.matrix[codervar==0,]),log=TRUE,lower.tail=FALSE)
+
+                    # don't count when we know the observed value, unless we're accounting for observed value
+                    ll.coder[(!is.na(true.codervar)) & (true.codervar != codervar)] <- NA
+                    coder.lls[,ci] <- ll.coder
+                    ci <- ci + 1
+                }
+
+                for(coder_formula in coder_formulas){
+                    coder.model.matrix <- model.matrix(coder_formula, df.temp)
+                    n.coder.model.covars <- dim(coder.model.matrix)[2]
+                    param.idx <- param.idx - n.coder.model.covars
+                }
+
+                ll.parts[,i] <- ll.y + ll.w + apply(coder.lls,1,function(x) sum(x)) 
+                
+            }
+
+            lls <- rowLogSumExps(ll.parts,na.rm=TRUE)
+
+            ## likelihood of observed data 
+            target <- -1 * sum(lls)
+            print(target)
+            print(params)
+            return(target)
+        }
+    }
+        
+    outcome.params <- colnames(model.matrix(outcome_formula,df))
+    response.var <- all.vars(outcome_formula)[1]
+    lower <- rep(-Inf, length(outcome.params))
+
+    if(outcome_family$family=='gaussian'){
+        params <- c(outcome.params, 'sigma_y')
+        lower <- c(lower, 0.00001)
+    } else {
+        params <- outcome.params
+    }
+
+    ## constrain the model of the coder and proxy vars
+    ## this is to ensure identifiability
+    ## it is a safe assumption because the coders aren't hostile (wrong more often than right)
+    ## so we can assume that y ~Bw, B is positive
+    proxy.params <- colnames(model.matrix(proxy_formula, df))
+    positive.params <- paste0('proxy_',response.var)
+    params <- c(params, paste0('proxy_',proxy.params))
+    lower <- c(lower, rep(-Inf, length(proxy.params)))
+    names(lower) <- params
+    lower[positive.params] <- 0.001
+
+    ci <- 0
+    for(coder_formula in coder_formulas){
+        coder.params <- colnames(model.matrix(coder_formula,df))
+        latent.coder.params <- coder.params %in% response.var
+        params <- c(params, paste0('coder_',ci,coder.params))
+        positive.params <- paste0('coder_',ci,response.var)
+        ci <- ci + 1
+        lower <- c(lower, rep(-Inf, length(coder.params)))
+        names(lower) <-params
+        lower[positive.params] <- 0.001
+    }
+
+    ## init by using the "loco model"
+    temp.df <- copy(df)
+    temp.df <- temp.df[y.obs.1 == y.obs.0, y:=y.obs.1]
+    loco.model <- glm(outcome_formula, temp.df, family=outcome_family)
+    
+    start <- rep(1,length(params))
+    names(start) <- params
+    start[names(coef(loco.model))] <- coef(loco.model)
+    names(lower) <- params
+    if(method=='optim'){
+        print(lower)
+        fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE,control=list(maxit=1e6))
+    } else {
+                
+        quoted.names <- gsub("[\\(\\)]",'',names(start))
+        print(quoted.names)
+        text <- paste("function(", paste0(quoted.names,'=',start,collapse=','),"){params<-c(",paste0(quoted.names,collapse=','),");return(nll(params))}")
+
+        measerr_mle_nll <- eval(parse(text=text))
+        names(start) <- quoted.names
+        names(lower) <- quoted.names
+        fit <- mle2(minuslogl=measerr_mle_nll, start=start, lower=lower, parnames=params,control=list(maxit=1e6),method='L-BFGS-B')
+    }
+
+    return(fit)
+}
+
index 71963b1f67cf2cfca3afb92db49f757a7005099f..45a5d51827cf2cda733c48ddbd63876bc305feaf 100644 (file)
@@ -6,7 +6,7 @@ library(filelock)
 library(argparser)
 
 parser <- arg_parser("Simulate data and fit corrected models.")
 library(argparser)
 
 parser <- arg_parser("Simulate data and fit corrected models.")
-parser <- add_argument(parser, "--infile", default="", help="name of the file to read.")
+parser <- add_argument(parser, "--infile", default="example_4.feather", help="name of the file to read.")
 parser <- add_argument(parser, "--remember-file", default="remembr.RDS", help="name of the remember file.")
 parser <- add_argument(parser, "--name", default="", help="The name to safe the data to in the remember file.")
 args <- parse_args(parser)
 parser <- add_argument(parser, "--remember-file", default="remembr.RDS", help="name of the remember file.")
 parser <- add_argument(parser, "--name", default="", help="The name to safe the data to in the remember file.")
 args <- parse_args(parser)
@@ -87,6 +87,7 @@ build_plot_dataset <- function(df){
 change.remember.file(args$remember_file, clear=TRUE)
 sims.df <- read_feather(args$infile)
 sims.df[,Bzx:=NA]
 change.remember.file(args$remember_file, clear=TRUE)
 sims.df <- read_feather(args$infile)
 sims.df[,Bzx:=NA]
+sims.df[,y_explained_variance:=NA]
 sims.df[,accuracy_imbalance_difference:=NA]
 plot.df <- build_plot_dataset(sims.df)
 
 sims.df[,accuracy_imbalance_difference:=NA]
 plot.df <- build_plot_dataset(sims.df)
 
@@ -97,6 +98,7 @@ set.remember.prefix(gsub("plot.df.","",args$name))
 remember(median(sims.df$cor.xz),'med.cor.xz')
 remember(median(sims.df$accuracy),'med.accuracy')
 remember(median(sims.df$error.cor.x),'med.error.cor.x')
 remember(median(sims.df$cor.xz),'med.cor.xz')
 remember(median(sims.df$accuracy),'med.accuracy')
 remember(median(sims.df$error.cor.x),'med.error.cor.x')
+remember(median(sims.df$error.cor.z),'med.error.cor.z')
 remember(median(sims.df$lik.ratio),'med.lik.ratio')
 
 
 remember(median(sims.df$lik.ratio),'med.lik.ratio')
 
 
index 8e6c4772f58edfbee00093d0dc70f5c7b341af7d..09d6bf3e7394c95439133896a2404c89e080f671 100644 (file)
@@ -9,7 +9,7 @@ source("summarize_estimator.R")
 
 
 parser <- arg_parser("Simulate data and fit corrected models.")
 
 
 parser <- arg_parser("Simulate data and fit corrected models.")
-parser <- add_argument(parser, "--infile", default="", help="name of the file to read.")
+parser <- add_argument(parser, "--infile", default="example_2.feather", help="name of the file to read.")
 parser <- add_argument(parser, "--remember-file", default="remembr.RDS", help="name of the remember file.")
 parser <- add_argument(parser, "--name", default="", help="The name to safe the data to in the remember file.")
 args <- parse_args(parser)
 parser <- add_argument(parser, "--remember-file", default="remembr.RDS", help="name of the remember file.")
 parser <- add_argument(parser, "--name", default="", help="The name to safe the data to in the remember file.")
 args <- parse_args(parser)
@@ -76,13 +76,13 @@ build_plot_dataset <- function(df){
 
     z.amelia.full <- summarize.estimator(df, 'amelia.full', 'z')
     
 
     z.amelia.full <- summarize.estimator(df, 'amelia.full', 'z')
     
-    x.mecor <- summarize.estimator(df, 'mecor', 'x')
+    ## x.mecor <- summarize.estimator(df, 'mecor', 'x')
 
 
-    z.mecor <- summarize.estimator(df, 'mecor', 'z')
+    ## z.mecor <- summarize.estimator(df, 'mecor', 'z')
 
 
-    x.mecor <- summarize.estimator(df, 'mecor', 'x')
+    ## x.mecor <- summarize.estimator(df, 'mecor', 'x')
 
 
-    z.mecor <- summarize.estimator(df, 'mecor', 'z')
+    ## z.mecor <- summarize.estimator(df, 'mecor', 'z')
 
     x.mle <- summarize.estimator(df, 'mle', 'x')
 
 
     x.mle <- summarize.estimator(df, 'mle', 'x')
 
@@ -97,7 +97,7 @@ build_plot_dataset <- function(df){
     z.gmm <- summarize.estimator(df, 'gmm', 'z')
 
     accuracy <- df[,mean(accuracy)]
     z.gmm <- summarize.estimator(df, 'gmm', 'z')
 
     accuracy <- df[,mean(accuracy)]
-    plot.df <- rbindlist(list(x.true,z.true,x.naive,z.naive,x.amelia.full,z.amelia.full,x.mecor, z.mecor, x.gmm, z.gmm, x.feasible, z.feasible,z.mle, x.mle, x.zhang, z.zhang, x.gmm, z.gmm),use.names=T)
+    plot.df <- rbindlist(list(x.true,z.true,x.naive,z.naive,x.amelia.full,z.amelia.full,x.gmm, z.gmm, x.feasible, z.feasible,z.mle, x.mle, x.zhang, z.zhang, x.gmm, z.gmm),use.names=T)
     plot.df[,accuracy := accuracy]
     plot.df <- plot.df[,":="(sd.est=sqrt(var.est)/N.sims)]
     return(plot.df)
     plot.df[,accuracy := accuracy]
     plot.df <- plot.df[,":="(sd.est=sqrt(var.est)/N.sims)]
     return(plot.df)
@@ -105,6 +105,7 @@ build_plot_dataset <- function(df){
 
 
 sims.df <- read_feather(args$infile)
 
 
 sims.df <- read_feather(args$infile)
+unique(sims.df[,.N,by=.(N,m)])
 print(unique(sims.df$N))
 
 # df <- df[apply(df,1,function(x) !any(is.na(x)))]
 print(unique(sims.df$N))
 
 # df <- df[apply(df,1,function(x) !any(is.na(x)))]
index f5e2c419826dae76e40e73f07ef5840cf9cbba7a..46450d59a4e288dc2405be2b713f854ab3b8c074 100644 (file)
@@ -17,6 +17,10 @@ build_plot_dataset <- function(df){
 
     z.true <-  summarize.estimator(df, 'true','z')
 
 
     z.true <-  summarize.estimator(df, 'true','z')
 
+    x.naive <-  summarize.estimator(df, 'naive','x')
+
+    z.naive <-  summarize.estimator(df, 'naive','z')
+
     x.loa0.feasible <- summarize.estimator(df, 'loa0.feasible','x')
     
     z.loa0.feasible <- summarize.estimator(df,'loa0.feasible','z')
     x.loa0.feasible <- summarize.estimator(df, 'loa0.feasible','x')
     
     z.loa0.feasible <- summarize.estimator(df,'loa0.feasible','z')
@@ -34,8 +38,14 @@ build_plot_dataset <- function(df){
     z.loco.mle <- summarize.estimator(df, 'loco.mle', 'z')
 
 
     z.loco.mle <- summarize.estimator(df, 'loco.mle', 'z')
 
 
+    z.loco.amelia <- summarize.estimator(df, 'amelia.full', 'z')
+    x.loco.amelia <- summarize.estimator(df, 'amelia.full', 'x')
+
+    z.loco.zhang <- summarize.estimator(df, 'zhang', 'z')
+    x.loco.zhang <- summarize.estimator(df, 'zhang', 'x')
+
     accuracy <- df[,mean(accuracy)]
     accuracy <- df[,mean(accuracy)]
-    plot.df <- rbindlist(list(x.true,z.true,x.loa0.feasible,z.loa0.feasible,x.loa0.mle,z.loa0.mle,x.loco.feasible, z.loco.feasible, z.loco.mle, x.loco.mle),use.names=T)
+    plot.df <- rbindlist(list(x.true,z.true,x.loa0.feasible,z.loa0.feasible,x.naive,z.naive,x.loa0.mle,z.loa0.mle,x.loco.feasible, z.loco.feasible, z.loco.mle, x.loco.mle, x.loco.amelia, z.loco.amelia, z.loco.zhang, x.loco.zhang),use.names=T)
     plot.df[,accuracy := accuracy]
     plot.df <- plot.df[,":="(sd.est=sqrt(var.est)/N.sims)]
     return(plot.df)
     plot.df[,accuracy := accuracy]
     plot.df <- plot.df[,":="(sd.est=sqrt(var.est)/N.sims)]
     return(plot.df)
index bf5e66193b749dd8a31b8765de45517d60727506..4ec79dce6c1b3175ad84767f947ea7508b12e125 100644 (file)
@@ -17,6 +17,10 @@ build_plot_dataset <- function(df){
 
     z.true <-  summarize.estimator(df, 'true','z')
 
 
     z.true <-  summarize.estimator(df, 'true','z')
 
+    x.naive <-  summarize.estimator(df, 'naive','x')
+
+    z.naive <-  summarize.estimator(df, 'naive','z')
+
     x.loa0.feasible <- summarize.estimator(df, 'loa0.feasible','x')
     
     z.loa0.feasible <- summarize.estimator(df,'loa0.feasible','z')
     x.loa0.feasible <- summarize.estimator(df, 'loa0.feasible','x')
     
     z.loa0.feasible <- summarize.estimator(df,'loa0.feasible','z')
@@ -33,36 +37,55 @@ build_plot_dataset <- function(df){
 
     z.loco.mle <- summarize.estimator(df, 'loco.mle', 'z')
 
 
     z.loco.mle <- summarize.estimator(df, 'loco.mle', 'z')
 
+    x.loco.mle <- summarize.estimator(df, 'loco.mle', 'x')
+
+    z.loco.amelia <- summarize.estimator(df, 'amelia.full', 'z')
+    x.loco.amelia <- summarize.estimator(df, 'amelia.full', 'x')
+
+    z.loco.zhang <- summarize.estimator(df, 'zhang', 'z')
+    x.loco.zhang <- summarize.estimator(df, 'zhang', 'x')
+
+
+    z.loco.gmm <- summarize.estimator(df, 'gmm', 'z')
+    x.loco.gmm <- summarize.estimator(df, 'gmm', 'x')
+
+    
+
+
     ## x.mle <- summarize.estimator(df, 'mle', 'x')
 
     ## z.mle <- summarize.estimator(df, 'mle', 'z')
 
     accuracy <- df[,mean(accuracy)]
     ## x.mle <- summarize.estimator(df, 'mle', 'x')
 
     ## z.mle <- summarize.estimator(df, 'mle', 'z')
 
     accuracy <- df[,mean(accuracy)]
-    plot.df <- rbindlist(list(x.true,z.true,x.loa0.feasible,z.loa0.feasible,x.loa0.mle,z.loa0.mle,x.loco.feasible, z.loco.feasible, x.loco.mle, z.loco.mle),use.names=T)
+    plot.df <- rbindlist(list(x.true,z.true,x.loa0.feasible,z.loa0.feasible,x.loa0.mle,z.loa0.mle,x.loco.feasible, z.loco.feasible, x.loco.mle, z.loco.mle, x.loco.amelia, z.loco.amelia,x.loco.zhang, z.loco.zhang,x.loco.gmm, z.loco.gmm,x.naive,z.naive),use.names=T)
     plot.df[,accuracy := accuracy]
     plot.df <- plot.df[,":="(sd.est=sqrt(var.est)/N.sims)]
     return(plot.df)
 }
 
 
     plot.df[,accuracy := accuracy]
     plot.df <- plot.df[,":="(sd.est=sqrt(var.est)/N.sims)]
     return(plot.df)
 }
 
 
-plot.df <- read_feather(args$infile)
-print(unique(plot.df$N))
+sims.df <- read_feather(args$infile)
+print(unique(sims.df$N))
 
 # df <- df[apply(df,1,function(x) !any(is.na(x)))]
 
 
 # df <- df[apply(df,1,function(x) !any(is.na(x)))]
 
-if(!('Bzx' %in% names(plot.df)))
-    plot.df[,Bzx:=NA]
+if(!('Bzx' %in% names(sims.df)))
+    sims.df[,Bzx:=NA]
 
 
-if(!('accuracy_imbalance_difference' %in% names(plot.df)))
-    plot.df[,accuracy_imbalance_difference:=NA]
+if(!('accuracy_imbalance_difference' %in% names(sims.df)))
+    sims.df[,accuracy_imbalance_difference:=NA]
 
 
-unique(plot.df[,'accuracy_imbalance_difference'])
+unique(sims.df[,'accuracy_imbalance_difference'])
 
 #plot.df <- build_plot_dataset(df[accuracy_imbalance_difference==0.1][N==700])
 
 #plot.df <- build_plot_dataset(df[accuracy_imbalance_difference==0.1][N==700])
-plot.df <- build_plot_dataset(plot.df)
+plot.df <- build_plot_dataset(sims.df)
 change.remember.file("remember_irr.RDS",clear=TRUE)
 remember(plot.df,args$name)
 
 change.remember.file("remember_irr.RDS",clear=TRUE)
 remember(plot.df,args$name)
 
+
+set.remember.prefix(gsub("plot.df.","",args$name))
+remember(median(sims.df$loco.accuracy),'med.loco.acc')
+
 #ggplot(df,aes(x=Bxy.est.mle)) + geom_histogram() + facet_grid(accuracy_imbalance_difference ~ Bzy)
 
 ## ## ## df[gmm.ER_pval<0.05]
 #ggplot(df,aes(x=Bxy.est.mle)) + geom_histogram() + facet_grid(accuracy_imbalance_difference ~ Bzy)
 
 ## ## ## df[gmm.ER_pval<0.05]
index 9dce9eaecef6b635dfae442614c044b6b3d091bc..f5db415561de015f3410cf98f94f44b6cf27db2b 100644 (file)
@@ -1,8 +1,8 @@
 #!/bin/bash
 #SBATCH --job-name="simulate measurement error models"
 ## Allocation Definition
 #!/bin/bash
 #SBATCH --job-name="simulate measurement error models"
 ## Allocation Definition
-#SBATCH --account=comdata
-#SBATCH --partition=compute-bigmem
+#SBATCH --account=comdata-ckpt
+#SBATCH --partition=ckpt
 ## Resources
 #SBATCH --nodes=1    
 ## Walltime (4 hours)
 ## Resources
 #SBATCH --nodes=1    
 ## Walltime (4 hours)
@@ -18,5 +18,6 @@ source ~/.bashrc
 
 TASK_NUM=$(($SLURM_ARRAY_TASK_ID + $1))
 TASK_CALL=$(sed -n ${TASK_NUM}p $2)
 
 TASK_NUM=$(($SLURM_ARRAY_TASK_ID + $1))
 TASK_CALL=$(sed -n ${TASK_NUM}p $2)
+echo ${TASK_CALL}
 ${TASK_CALL}
 
 ${TASK_CALL}
 
index 27f0276f483999bcde37866972cf507c61233119..82b17a737ae05c9a98109da6164a9c75a10aebc3 100644 (file)
@@ -7,6 +7,7 @@ library(Zelig)
 library(bbmle)
 library(matrixStats) # for numerically stable logsumexps
 
 library(bbmle)
 library(matrixStats) # for numerically stable logsumexps
 
+source("pl_methods.R")
 source("measerr_methods.R") ## for my more generic function.
 
 ## This uses the pseudolikelihood approach from Carroll page 349.
 source("measerr_methods.R") ## for my more generic function.
 
 ## This uses the pseudolikelihood approach from Carroll page 349.
@@ -36,124 +37,6 @@ my.pseudo.mle <- function(df){
 
 }
 
 
 }
 
-
-## model from Zhang's arxiv paper, with predictions for y
-## Zhang got this model from Hausman 1998
-### I think this is actually eqivalent to the pseudo.mle method
-zhang.mle.iv <- function(df){
-    df.obs <- df[!is.na(x.obs)]
-    df.unobs <- df[is.na(x.obs)]
-
-    tn <- df.obs[(w_pred == 0) & (x.obs == w_pred),.N]
-    pn <- df.obs[(w_pred==0), .N]
-    npv <- tn / pn
-
-    tp <- df.obs[(w_pred==1) & (x.obs == w_pred),.N]
-    pp <- df.obs[(w_pred==1),.N]
-    ppv <- tp / pp
-
-    nll <- function(B0=0, Bxy=0, Bzy=0, sigma_y=0.1){
-
-    ## fpr = 1 - TNR
-    ### Problem: accounting for uncertainty in ppv / npv
-
-    ## fnr = 1 - TPR
-    ll.y.obs <- with(df.obs, dnorm(y, B0 + Bxy * x + Bzy * z, sd=sigma_y,log=T))
-    ll <- sum(ll.y.obs)
-    
-    # unobserved case; integrate out x
-    ll.x.1 <- with(df.unobs, dnorm(y, B0 + Bxy + Bzy * z, sd = sigma_y, log=T))
-    ll.x.0 <- with(df.unobs, dnorm(y, B0 + Bzy * z, sd = sigma_y,log=T))
-
-    ## case x == 1
-    lls.x.1 <- colLogSumExps(rbind(log(ppv) + ll.x.1, log(1-ppv) + ll.x.0))
-    
-    ## case x == 0
-    lls.x.0 <- colLogSumExps(rbind(log(1-npv) + ll.x.1, log(npv) + ll.x.0))
-
-    lls <- colLogSumExps(rbind(df.unobs$w_pred * lls.x.1, (1-df.unobs$w_pred) * lls.x.0))
-    ll <- ll + sum(lls)
-    return(-ll)
-    }    
-    mlefit <- mle2(minuslogl = nll, control=list(maxit=1e6), lower=list(sigma_y=0.0001, B0=-Inf, Bxy=-Inf, Bzy=-Inf),
-                   upper=list(sigma_y=Inf, B0=Inf, Bxy=Inf, Bzy=Inf),method='L-BFGS-B')
-    return(mlefit)
-}
-
-## this is equivalent to the pseudo-liklihood model from Caroll
-## zhang.mle.dv <- function(df){
-
-##     nll <- function(B0=0, Bxy=0, Bzy=0, ppv=0.9, npv=0.9){
-##     df.obs <- df[!is.na(y.obs)]
-
-##     ## fpr = 1 - TNR
-##     ll.w0y0 <- with(df.obs[y.obs==0],dbinom(1-w_pred,1,npv,log=TRUE))
-##     ll.w1y1 <- with(df.obs[y.obs==1],dbinom(w_pred,1,ppv,log=TRUE))
-
-##     # observed case
-##     ll.y.obs <- vector(mode='numeric', length=nrow(df.obs))
-##     ll.y.obs[df.obs$y.obs==1] <- with(df.obs[y.obs==1], plogis(B0 + Bxy * x + Bzy * z,log=T))
-##     ll.y.obs[df.obs$y.obs==0] <- with(df.obs[y.obs==0], plogis(B0 + Bxy * x + Bzy * z,log=T,lower.tail=FALSE))
-
-##     ll <- sum(ll.y.obs) + sum(ll.w0y0) + sum(ll.w1y1)
-
-##     # unobserved case; integrate out y
-##     ## case y = 1
-##     ll.y.1 <- vector(mode='numeric', length=nrow(df))
-##     pi.y.1 <- with(df,plogis(B0 + Bxy * x + Bzy*z, log=T))
-##     ## P(w=1| y=1)P(y=1) + P(w=0|y=1)P(y=1) = P(w=1,y=1) + P(w=0,y=1)
-##     lls.y.1 <- colLogSumExps(rbind(log(ppv) + pi.y.1, log(1-ppv) + pi.y.1))
-    
-##     ## case y = 0
-##     ll.y.0 <- vector(mode='numeric', length=nrow(df))
-##     pi.y.0 <- with(df,plogis(B0 + Bxy * x + Bzy*z, log=T,lower.tail=FALSE))
-
-##     ## P(w=1 | y=0)P(y=0) + P(w=0|y=0)P(y=0) = P(w=1,y=0) + P(w=0,y=0)
-##     lls.y.0 <- colLogSumExps(rbind(log(npv) + pi.y.0, log(1-npv) + pi.y.0))
-
-##     lls <- colLogSumExps(rbind(lls.y.1, lls.y.0))
-##     ll <- ll + sum(lls)
-##     return(-ll)
-##     }    
-##     mlefit <- mle2(minuslogl = nll, control=list(maxit=1e6),method='L-BFGS-B',lower=list(B0=-Inf, Bxy=-Inf, Bzy=-Inf, ppv=0.001,npv=0.001),
-##                    upper=list(B0=Inf, Bxy=Inf, Bzy=Inf,ppv=0.999,npv=0.999))
-##     return(mlefit)
-## }
-
-zhang.mle.dv <- function(df){
-    df.obs <- df[!is.na(y.obs)]
-    df.unobs <- df[is.na(y.obs)]
-
-    fp <- df.obs[(w_pred==1) & (y.obs != w_pred),.N]
-    p <- df.obs[(w_pred==1),.N]
-    fpr <- fp / p
-    fn <- df.obs[(w_pred==0) & (y.obs != w_pred), .N]
-    n <- df.obs[(w_pred==0),.N]
-    fnr <- fn / n
-
-    nll <- function(B0=0, Bxy=0, Bzy=0){
-
-
-        ## observed case
-        ll.y.obs <- vector(mode='numeric', length=nrow(df.obs))
-        ll.y.obs[df.obs$y.obs==1] <- with(df.obs[y.obs==1], plogis(B0 + Bxy * x + Bzy * z,log=T))
-        ll.y.obs[df.obs$y.obs==0] <- with(df.obs[y.obs==0], plogis(B0 + Bxy * x + Bzy * z,log=T,lower.tail=FALSE))
-
-        ll <- sum(ll.y.obs)
-
-        pi.y.1 <- with(df,plogis(B0 + Bxy * x + Bzy*z, log=T))
-        pi.y.0 <- with(df,plogis(B0 + Bxy * x + Bzy*z, log=T,lower.tail=FALSE))
-
-        lls <- with(df.unobs, colLogSumExps(rbind(w_pred * colLogSumExps(rbind(log(fpr), log(1 - fnr - fpr)+pi.y.1)),
-        (1-w_pred) * colLogSumExps(rbind(log(1-fpr), log(1 - fnr - fpr)+pi.y.0)))))
-    
-        ll <- ll + sum(lls)
-        return(-ll)
-    }    
-    mlefit <- mle2(minuslogl = nll, control=list(maxit=1e6),method='L-BFGS-B',lower=c(B0=-Inf, Bxy=-Inf, Bzy=-Inf),
-                   upper=c(B0=Inf, Bxy=Inf, Bzy=Inf))
-    return(mlefit)
-}
  
 ## This uses the likelihood approach from Carroll page 353.
 ## assumes that we have a good measurement error model
  
 ## This uses the likelihood approach from Carroll page 353.
 ## assumes that we have a good measurement error model
@@ -208,10 +91,14 @@ my.mle <- function(df){
 
 run_simulation_depvar <- function(df, result, outcome_formula=y~x+z, proxy_formula=w_pred~y){
 
 
 run_simulation_depvar <- function(df, result, outcome_formula=y~x+z, proxy_formula=w_pred~y){
 
-    accuracy <- df[,mean(w_pred==y)]
+    (accuracy <- df[,mean(w_pred==y)])
     result <- append(result, list(accuracy=accuracy))
     result <- append(result, list(accuracy=accuracy))
-    error.cor.x <- cor(df$x, df$w - df$x)
-    result <- append(result, list(error.cor.x = error.cor.x))
+    (error.cor.z <- cor(df$z, df$y - df$w_pred))
+    (error.cor.x <- cor(df$x, df$y - df$w_pred))
+    (error.cor.y <- cor(df$y, df$y - df$w_pred))
+    result <- append(result, list(error.cor.x = error.cor.x,
+                                  error.cor.z = error.cor.z,
+                                  error.cor.y = error.cor.y))
 
     model.null <- glm(y~1, data=df,family=binomial(link='logit'))
     (model.true <- glm(y ~ x + z, data=df,family=binomial(link='logit')))
 
     model.null <- glm(y~1, data=df,family=binomial(link='logit'))
     (model.true <- glm(y ~ x + z, data=df,family=binomial(link='logit')))
@@ -220,7 +107,7 @@ run_simulation_depvar <- function(df, result, outcome_formula=y~x+z, proxy_formu
     true.ci.Bxy <- confint(model.true)['x',]
     true.ci.Bzy <- confint(model.true)['z',]
 
     true.ci.Bxy <- confint(model.true)['x',]
     true.ci.Bzy <- confint(model.true)['z',]
 
-
+    result <- append(result, list(cor.xz=cor(df$x,df$z)))
     result <- append(result, list(lik.ratio=lik.ratio))
 
     result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
     result <- append(result, list(lik.ratio=lik.ratio))
 
     result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
@@ -293,33 +180,26 @@ run_simulation_depvar <- function(df, result, outcome_formula=y~x+z, proxy_formu
     
 
     # amelia says use normal distribution for binary variables.
     
 
     # amelia says use normal distribution for binary variables.
-    tryCatch({
-        amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('y','ystar','w'))
-        mod.amelia.k <- zelig(y.obs~x+z, model='ls', data=amelia.out.k$imputations, cite=FALSE)
-        (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
-        est.x.mi <- coefse['x','Estimate']
-        est.x.se <- coefse['x','Std.Error']
-        result <- append(result,
-                         list(Bxy.est.amelia.full = est.x.mi,
-                              Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
-                              Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se
-                              ))
-
-        est.z.mi <- coefse['z','Estimate']
-        est.z.se <- coefse['z','Std.Error']
 
 
-        result <- append(result,
-                         list(Bzy.est.amelia.full = est.z.mi,
-                              Bzy.ci.upper.amelia.full = est.z.mi + 1.96 * est.z.se,
-                              Bzy.ci.lower.amelia.full = est.z.mi - 1.96 * est.z.se
-                              ))
+    amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('y','ystar','w'))
+    mod.amelia.k <- zelig(y.obs~x+z, model='ls', data=amelia.out.k$imputations, cite=FALSE)
+    (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
+    est.x.mi <- coefse['x','Estimate']
+    est.x.se <- coefse['x','Std.Error']
+    result <- append(result,
+                     list(Bxy.est.amelia.full = est.x.mi,
+                          Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
+                          Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se
+                          ))
 
 
-    },
-    error = function(e){
-        message("An error occurred:\n",e)
-        result$error <- paste0(result$error,'\n', e)
-    })
+    est.z.mi <- coefse['z','Estimate']
+    est.z.se <- coefse['z','Std.Error']
 
 
+    result <- append(result,
+                     list(Bzy.est.amelia.full = est.z.mi,
+                          Bzy.ci.upper.amelia.full = est.z.mi + 1.96 * est.z.se,
+                          Bzy.ci.lower.amelia.full = est.z.mi - 1.96 * est.z.se
+                          ))
 
     return(result)
 
 
     return(result)
 
@@ -393,7 +273,7 @@ run_simulation <-  function(df, result, outcome_formula=y~x+z, proxy_formula=NUL
                                   Bzy.ci.lower.naive = naive.ci.Bzy[1]))
                                   
 
                                   Bzy.ci.lower.naive = naive.ci.Bzy[1]))
                                   
 
-    tryCatch({
+
     amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('x','w'))
     mod.amelia.k <- zelig(y~x.obs+z, model='ls', data=amelia.out.k$imputations, cite=FALSE)
     (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
     amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('x','w'))
     mod.amelia.k <- zelig(y~x.obs+z, model='ls', data=amelia.out.k$imputations, cite=FALSE)
     (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
@@ -415,14 +295,7 @@ run_simulation <-  function(df, result, outcome_formula=y~x+z, proxy_formula=NUL
                           Bzy.ci.lower.amelia.full = est.z.mi - 1.96 * est.z.se
                           ))
 
                           Bzy.ci.lower.amelia.full = est.z.mi - 1.96 * est.z.se
                           ))
 
-    },
-    error = function(e){
-        message("An error occurred:\n",e)
-        result$error <-paste0(result$error,'\n', e)
-    }
-    )
 
 
-    tryCatch({
         temp.df <- copy(df)
         temp.df <- temp.df[,x:=x.obs]
         mod.caroll.lik <- measerr_mle(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula, truth_formula=truth_formula)
         temp.df <- copy(df)
         temp.df <- temp.df[,x:=x.obs]
         mod.caroll.lik <- measerr_mle(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula, truth_formula=truth_formula)
@@ -439,14 +312,6 @@ run_simulation <-  function(df, result, outcome_formula=y~x+z, proxy_formula=NUL
                               Bzy.est.mle = coef['z'],
                               Bzy.ci.upper.mle = ci.upper['z'],
                               Bzy.ci.lower.mle = ci.lower['z']))
                               Bzy.est.mle = coef['z'],
                               Bzy.ci.upper.mle = ci.upper['z'],
                               Bzy.ci.lower.mle = ci.lower['z']))
-    },
-
-    error = function(e){
-        message("An error occurred:\n",e)
-        result$error <- paste0(result$error,'\n', e)
-    })
-
-    tryCatch({
 
         mod.zhang.lik <- zhang.mle.iv(df)
         coef <- coef(mod.zhang.lik)
 
         mod.zhang.lik <- zhang.mle.iv(df)
         coef <- coef(mod.zhang.lik)
@@ -458,12 +323,6 @@ run_simulation <-  function(df, result, outcome_formula=y~x+z, proxy_formula=NUL
                               Bzy.est.zhang = coef['Bzy'],
                               Bzy.ci.upper.zhang = ci['Bzy','97.5 %'],
                               Bzy.ci.lower.zhang = ci['Bzy','2.5 %']))
                               Bzy.est.zhang = coef['Bzy'],
                               Bzy.ci.upper.zhang = ci['Bzy','97.5 %'],
                               Bzy.ci.lower.zhang = ci['Bzy','2.5 %']))
-    },
-
-    error = function(e){
-        message("An error occurred:\n",e)
-        result$error <- paste0(result$error,'\n', e)
-    })
 
     ## What if we can't observe k -- most realistic scenario. We can't include all the ML features in a model.
     ## amelia.out.nok <- amelia(df, m=200, p2s=0, idvars=c("x","w_pred"), noms=noms)
 
     ## What if we can't observe k -- most realistic scenario. We can't include all the ML features in a model.
     ## amelia.out.nok <- amelia(df, m=200, p2s=0, idvars=c("x","w_pred"), noms=noms)
@@ -514,29 +373,29 @@ run_simulation <-  function(df, result, outcome_formula=y~x+z, proxy_formula=NUL
                           Bzy.ci.lower.gmm = gmm.res$confint[2,1]))
 
 
                           Bzy.ci.lower.gmm = gmm.res$confint[2,1]))
 
 
-    tryCatch({
-    mod.calibrated.mle <- mecor(y ~ MeasError(w_pred, reference = x.obs) + z, df, B=400, method='efficient')
-    (mod.calibrated.mle)
-    (mecor.ci <- summary(mod.calibrated.mle)$c$ci['x.obs',])
-    result <- append(result, list(
-                                 Bxy.est.mecor = mecor.ci['Estimate'],
-                                 Bxy.ci.upper.mecor = mecor.ci['UCI'],
-                                 Bxy.ci.lower.mecor = mecor.ci['LCI'])
-                     )
-
-    (mecor.ci <- summary(mod.calibrated.mle)$c$ci['z',])
-
-    result <- append(result, list(
-                                 Bzy.est.mecor = mecor.ci['Estimate'],
-                                 Bzy.ci.upper.mecor = mecor.ci['UCI'],
-                                 Bzy.ci.lower.mecor = mecor.ci['LCI'])
-                     )
-    },
-    error = function(e){
-        message("An error occurred:\n",e)
-        result$error <- paste0(result$error, '\n', e)
-    }
-    )
+    ## tryCatch({
+    ## mod.calibrated.mle <- mecor(y ~ MeasError(w_pred, reference = x.obs) + z, df, B=400, method='efficient')
+    ## (mod.calibrated.mle)
+    ## (mecor.ci <- summary(mod.calibrated.mle)$c$ci['x.obs',])
+    ## result <- append(result, list(
+    ##                              Bxy.est.mecor = mecor.ci['Estimate'],
+    ##                              Bxy.ci.upper.mecor = mecor.ci['UCI'],
+    ##                              Bxy.ci.lower.mecor = mecor.ci['LCI'])
+    ##                  )
+
+    ## (mecor.ci <- summary(mod.calibrated.mle)$c$ci['z',])
+
+    ## result <- append(result, list(
+    ##                              Bzy.est.mecor = mecor.ci['Estimate'],
+    ##                              Bzy.ci.upper.mecor = mecor.ci['UCI'],
+    ##                              Bzy.ci.lower.mecor = mecor.ci['LCI'])
+    ##                  )
+    ## },
+    ## error = function(e){
+    ##     message("An error occurred:\n",e)
+    ##     result$error <- paste0(result$error, '\n', e)
+    ## }
+    ## )
 ##    clean up memory
 ##    rm(list=c("df","y","x","g","w","v","train","p","amelia.out.k","amelia.out.nok", "mod.calibrated.mle","gmm.res","mod.amelia.k","mod.amelia.nok", "model.true","model.naive","model.feasible"))
     
 ##    clean up memory
 ##    rm(list=c("df","y","x","g","w","v","train","p","amelia.out.k","amelia.out.nok", "mod.calibrated.mle","gmm.res","mod.amelia.k","mod.amelia.nok", "model.true","model.naive","model.feasible"))
     
index e0e7622386ee0bd246ad0c19bb95fc8974488442..3e4209f42f4c3486a89c1499e221c297b424b643 100644 (file)
@@ -31,8 +31,8 @@ summarize.estimator <- function(df, suffix='naive', coefname='x'){
                           var.est = var(.SD[[paste0('B',coefname,'y.est.',suffix)]]),
                           est.upper.95 = quantile(.SD[[paste0('B',coefname,'y.est.',suffix)]],0.975,na.rm=T),
                           est.lower.95 = quantile(.SD[[paste0('B',coefname,'y.est.',suffix)]],0.025,na.rm=T),
                           var.est = var(.SD[[paste0('B',coefname,'y.est.',suffix)]]),
                           est.upper.95 = quantile(.SD[[paste0('B',coefname,'y.est.',suffix)]],0.975,na.rm=T),
                           est.lower.95 = quantile(.SD[[paste0('B',coefname,'y.est.',suffix)]],0.025,na.rm=T),
-                          mean.ci.upper = mean(.SD[[paste0('B',coefname,'y.ci.upper.',suffix)]]),
-                          mean.ci.lower = mean(.SD[[paste0('B',coefname,'y.ci.lower.',suffix)]]),
+                          mean.ci.upper = mean(.SD[[paste0('B',coefname,'y.ci.upper.',suffix)]],na.rm=T),
+                          mean.ci.lower = mean(.SD[[paste0('B',coefname,'y.ci.lower.',suffix)]],na.rm=T),
                           ci.upper.975 = quantile(.SD[[paste0('B',coefname,'y.ci.upper.',suffix)]],0.975,na.rm=T),
                           ci.upper.025 = quantile(.SD[[paste0('B',coefname,'y.ci.upper.',suffix)]],0.025,na.rm=T),
                           ci.lower.975 = quantile(.SD[[paste0('B',coefname,'y.ci.lower.',suffix)]],0.975,na.rm=T),
                           ci.upper.975 = quantile(.SD[[paste0('B',coefname,'y.ci.upper.',suffix)]],0.975,na.rm=T),
                           ci.upper.025 = quantile(.SD[[paste0('B',coefname,'y.ci.upper.',suffix)]],0.025,na.rm=T),
                           ci.lower.975 = quantile(.SD[[paste0('B',coefname,'y.ci.lower.',suffix)]],0.975,na.rm=T),

Community Data Science Collective || Want to submit a patch?