<pre><code>## [1] 9.643215 2.158358 1.396595 0.192623 1.752234 0.170634</code></pre>
<p>Inspecting the first few values returned by <code>head()</code> gave you a clue. Rounded to six decimal places, the vectors match!</p>
<p>I can create a table comparing the sorted rounded values to check this.</p>
-<pre class="r"><code>table(sort(round(w2.data, 6)) == sort(round(w3.data$x, 6)))</code></pre>
+<pre class="r"><code>table(round(w2.data,6) == round(w3.data$x,6))</code></pre>
<pre><code>##
## TRUE
## 95</code></pre>
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -4.42 3.19 7.81 9.96 14.61 33.14 5</code></pre>
<pre class="r"><code>### Run this line again to assign the new dataframe to p
-p <- ggplot(w3.data, aes(x=x, y=y))
+p <- ggplot(data=w3.data, mapping=aes(x=x, y=y))
p + geom_point(aes(color=j, size=l, shape=k))</code></pre>
<pre><code>## Warning: Using size for a discrete variable is not advised.</code></pre>
<ol start="4" style="list-style-type: lower-alpha">
<li>Is random assignment to tents likely to ensure <span class="math inline">\(\leq1~arachnophobe\)</span> per tent?</li>
</ol>
-<p>Random assignment and the independence assumption means that the answer to part c is the inverse of the outcome we’re looking to avoid: <span class="math inline">\(P(\gt1~arachnophobes) = 1-P(\leq1~arachnophobe)\)</span>. So, <span class="math inline">\(P(\gt1~arachnophobes) = 1-0.84 = 0.16 = 16\%\)</span>. Those are the probabilities, but the interpretation really depends on how confident the camp counselor feels about a <span class="math inline">\(16\%\)</span> chance of having multiple arachnophobic campers in one of the tents.</p>
+<p>Random assignment and the independence assumption means that the answer to part c is the complement of the outcome we’re looking to avoid: <span class="math inline">\(P(\gt1~arachnophobes) = 1-P(\leq1~arachnophobe)\)</span>. So, <span class="math inline">\(P(\gt1~arachnophobes) = 1-0.84 = 0.16 = 16\%\)</span>. Those are the probabilities, but the interpretation really depends on how confident the camp counselor feels about a <span class="math inline">\(16\%\)</span> chance of having multiple arachnophobic campers in one of the tents.</p>
</div>
</div>