+The answers don't match exactly (because of the rounding I did in computing the expected counts), however the payoff/interpretation is the same: we cannot reject the null hypothesis of no relationship between region and direction opinoin in the sample.
+
+## Empirical Questions
+
+### EQ1
+
+a) The unit of analysis is the customer. The dependent variable is the type of board purchased and the independent variable is gender. Males, females, and unkown gender customers are being compared. This is a two-way test.
+
+b) For this type of comparison statistical tests help to give (or take away) confidence in any observed differences across categories. Choosing a statistical test is based on the question that you want to answer and the type of data that you have available to answer it. For example, if this were numeric data (e.g., the amount of money spent on electronics for men and women) then we could choose a t-test to compare those distributions.
+
+c) The null hypothesis ($H_0$) is that the board purchased is independent of the gender of the customer. The alternative hypothesis ($H_A$) is that board purchase choice is dependent on gender.
+
+d) A $\chi^2$ test found statistically significant evidence that board purchase behavior differs by gender. This difference is convincing, but it does directly not tell us what the authors set out to understand, which is the difference between men and women (the test could have identified a significant difference in the number of unknown gender customers across board types). Many of these concerns are addressed in the text and with additional tests, giving increased confidence in the observed differences.
+
+### — EQ2
+
+a) These are counts for two categorical variables, so the procedure used was a $\chi^2$ test. The null hypothesis is that whether or not a blog is governed by one person is independent of whether it is on the left or the right ideologically.
+
+b) Assuming that the null hypothesis of no difference across the two groups is compelling, it would be surprising to see these results in a world where ideological orientation and blog governance have no relationship. In this respect, it makes sense to believe that this difference is likely real. Perhaps the main reason to be skeptical is the way that the data are grouped. The authors could have grouped them differently (e.g., 1-2 people, 3-4 people, and 5+ people); if the decision on how to group was made after seeing the data then we have good reason to be skeptical.
+
+c) We can do this in R.
+
+```{r}
+
+# First we create the dataframe
+df = data.frame(Governance=c('Individual','Multiple', 'Individual','Multiple'),
+ Ideology = c('Left','Left','Right','Right'),
+ Count = c(13,51,27,38))
+
+# We can make sure it's the same by testing the Chi-squared
+chisq.test(matrix(df$Count, nrow=2))
+
+# Using Jeremy's tidyverse code:
+percentage_data <- df %>%
+ group_by(Ideology) %>%
+ summarize(individual_ratio = sum(Count[Governance=='Individual']) / sum(Count),
+ group_count = sum(Count))
+
+shaw_benkler_plot = percentage_data %>%
+ ggplot(aes(x=Ideology, y=individual_ratio * 100)) +
+ geom_bar(stat='identity', aes(fill=c('red','blue')), show.legend=F) +
+ ylab('Percentage of Blogs') + theme_minimal()
+
+shaw_benkler_plot
+```
+
+
+If we want to add error bars, we need to calculate them (Note that ggplot could do this for us if we had raw data - always share your data!).
+
+For our purposes here, Jeremy decided to use confidence intervals. The standard error is another reasonable choice. Either way, ggplot has a `geom_errorbar` layer that is very useful.
+
+Remember that for a binomial distribution (we can consider individual/non-individual as binomial), confidence intervals are
+$\hat{p} \pm z^* \sqrt{\frac{\hat{p}~(1-\hat{p})}{n}}$
+
+```{r}
+ci_95 = 1.96 * sqrt(percentage_data$individual_ratio * (1 - percentage_data$individual_ratio)/percentage_data$group_count)
+
+shaw_benkler_plot + geom_errorbar(aes(ymin=(individual_ratio-ci_95)*100, ymax=(individual_ratio + ci_95)*100),
+ alpha = .3,
+ size=1.1,
+ width=.4)
+
+```
+
+The error bars do overlap in this case, indicating that the true population proportions may not be as far apart as our point estimates suggest. Note that this is not the same as the hypothesis test.
+
+d) On the one hand, we don't need to worry about the base rate fallacy because the sizes of both groups are about the same and the paper does not abuse the evidence too egregiously. The base rate fallacy would likely come into play, however, in the ways that the results are (mis)represented. For example, you might imagine some news coverage looking at these results and claiming something (totally wrong!) like "Harvard study finds right wing blogs more than twice as likely to be solo affairs." This is taking a relationship between the sample proportions ($\hat{p}$ in the language of our textbook) and converting that into a statement about the relationship between population proportions ($p$). That would be a mess.
+
+Another way in which the base rate fallacy could play a role in this paper, however, concerns the presence of multiple comparisons. The authors conducted numerous statistical tests (indeed, one of the authors seems to recall that some of the tests were not even reported in the paper <Gasp!>) and they make no effort to address the baseline probability of false positives.
+
+In any case, the point here is that the statistical tests reported in the paper may not mean exactly what the authors said they did in the context of the publication. That may or may not change the validity of the results, but it should inspire us all to do better statistical analysis!