-<p>Consider that 25 people can be combined into pairs <span class="math inline">\({25 \choose 2}\)</span> ways (which you can read “as 25 choose 2”), which is equal to <span class="math inline">\(\frac{25 \times 24}{2} = 300\)</span> (and that little calculation is where those <a href="https://en.wikipedia.org/wiki/Binomial_coefficient">binomial coefficients</a> I mentioned in my hint come in handy).</p>
-<p>Generalizing the logic from part b of the textbook exercise last week problem, I have assumed that each of these possible pairings are independent and thus each one has a probability <span class="math inline">\(P = (\frac{364}{365})\)</span> of producing an <em>unmatched</em> set of birthdays.</p>
+<p>Consider that 25 people can be combined into pairs <span class="math inline">\({25 \choose 2}\)</span> ways (which you can read as “25 choose 2”), which is equal to <span class="math inline">\(\frac{25 \times 24}{2} = 300\)</span> (and that little calculation is where those <a href="https://en.wikipedia.org/wiki/Binomial_coefficient">binomial coefficients</a> I mentioned in my hint come in handy).</p>
+<p>Generalizing the logic from part b of the textbook exercise last week, I have assumed that each of these possible pairings are independent and thus each one has a probability <span class="math inline">\(P = (\frac{364}{365})\)</span> of producing an <em>unmatched</em> set of birthdays.</p>