<p>The general formula for a confidence interval is <span class="math inline">\(point~estimate~±~z^*\times~SE\)</span>. Where <span class="math inline">\(z^*\)</span> corresponds to the z-score for the desired value of <span class="math inline">\(\alpha\)</span>.</p>
<p>To estimate the interval from the data described in the question, identify the three different values. The point estimate is 45%, <span class="math inline">\(z^* = 2.58\)</span> for a 99% confidence level (that’s the number of standard deviations around the mean that ensure that 99% of a Z-score distribution is included), and <span class="math inline">\(SE = 2.4\%\)</span>. With this we can plug and chug:</p>
<p><span class="math display">\[52\% ± 2.58 \times 2.4\%\]</span> And that yields: <span class="math display">\[95\% CI = (45.8\%, 58.2\%)\]</span></p>
<p>Which means that from this data we are 99% confident that between 45.8% and 58.2% U.S. adult Twitter users get some news through the site.</p>
</div>
<p>The general formula for a confidence interval is <span class="math inline">\(point~estimate~±~z^*\times~SE\)</span>. Where <span class="math inline">\(z^*\)</span> corresponds to the z-score for the desired value of <span class="math inline">\(\alpha\)</span>.</p>
<p>To estimate the interval from the data described in the question, identify the three different values. The point estimate is 45%, <span class="math inline">\(z^* = 2.58\)</span> for a 99% confidence level (that’s the number of standard deviations around the mean that ensure that 99% of a Z-score distribution is included), and <span class="math inline">\(SE = 2.4\%\)</span>. With this we can plug and chug:</p>
<p><span class="math display">\[52\% ± 2.58 \times 2.4\%\]</span> And that yields: <span class="math display">\[95\% CI = (45.8\%, 58.2\%)\]</span></p>
<p>Which means that from this data we are 99% confident that between 45.8% and 58.2% U.S. adult Twitter users get some news through the site.</p>
</div>