+++ /dev/null
-from pyspark.sql import functions as f
-from pyspark.sql import SparkSession
-from pyspark.sql import Window
-import numpy as np
-import pyarrow
-import pyarrow.dataset as ds
-import pandas as pd
-import fire
-from itertools import islice, chain
-from pathlib import Path
-from similarities_helper import *
-from multiprocessing import Pool, cpu_count
-from functools import partial
-
-
-def _week_similarities(week, simfunc, tfidf_path, term_colname, min_df, max_df, included_subreddits, topN, outdir:Path):
- term = term_colname
- term_id = term + '_id'
- term_id_new = term + '_id_new'
- print(f"loading matrix: {week}")
- entries, subreddit_names = reindex_tfidf(infile = tfidf_path,
- term_colname=term_colname,
- min_df=min_df,
- max_df=max_df,
- included_subreddits=included_subreddits,
- topN=topN,
- week=week)
- mat = csr_matrix((entries[tfidf_colname],(entries[term_id_new], entries.subreddit_id_new)))
- print('computing similarities')
- sims = column_similarities(mat)
- del mat
- sims = pd.DataFrame(sims.todense())
- sims = sims.rename({i: sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1)
- sims['_subreddit'] = names.subreddit.values
- outfile = str(Path(outdir) / str(week))
- write_weekly_similarities(outfile, sims, week, names)
-
-def pull_weeks(batch):
- return set(batch.to_pandas()['week'])
-
-#tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_weekly.parquet')
-def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, max_df=None, included_subreddits = None, topN = 500):
- print(outfile)
- tfidf_ds = ds.dataset(tfidf_path)
- tfidf_ds = tfidf_ds.to_table(columns=["week"])
- batches = tfidf_ds.to_batches()
-
- with Pool(cpu_count()) as pool:
- weeks = set(chain( * pool.imap_unordered(pull_weeks,batches)))
-
- weeks = sorted(weeks)
- # do this step in parallel if we have the memory for it.
- # should be doable with pool.map
-
- print(f"computing weekly similarities")
- week_similarities_helper = partial(_week_similarities,simfunc=column_similarities, tfidf_path=tfidf_path, term_colname=term_colname, outdir=outfile, min_df=min_df,max_df=max_df,included_subreddits=included_subreddits,topN=topN)
-
- with Pool(cpu_count()) as pool: # maybe it can be done with 40 cores on the huge machine?
- list(pool.map(week_similarities_helper,weeks))
-
-def author_cosine_similarities_weekly(outfile, min_df=2, max_df=None, included_subreddits=None, topN=500):
- return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet',
- outfile,
- 'author',
- min_df,
- max_df,
- included_subreddits,
- topN)
-
-def term_cosine_similarities_weekly(outfile, min_df=None, max_df=None, included_subreddits=None, topN=500):
- return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet',
- outfile,
- 'term',
- min_df,
- max_df,
- included_subreddits,
- topN)
-
-if __name__ == "__main__":
- fire.Fire({'authors':author_cosine_similarities_weekly,
- 'terms':term_cosine_similarities_weekly})