]> code.communitydata.science - covid19.git/blob - wikipedia_views/analysis/pageview_example.R
use 'item' instead of 'entity'
[covid19.git] / wikipedia_views / analysis / pageview_example.R
1 ### COVID-19 Digital Observatory
2 ### 2020-03-28
3 ### 
4 ### Minimal example analysis file using pageview data
5
6 library(tidyverse)
7 library(ggplot2)
8 library(scales)
9
10 ### Import and cleanup data
11
12 DataURL <-
13     url("https://github.com/CommunityDataScienceCollective/COVID-19_Digital_Observatory/raw/master/wikipedia_views/data/dailyviews2020032600.tsv")
14
15 views <-
16     read.table(DataURL, sep="\t", header=TRUE, stringsAsFactors=FALSE) 
17
18 ### Alternatively, uncomment and run if working locally with full git
19 ### tree
20 ###
21 ### Identify data source directory and file
22 ## DataDir <- ("../data/")
23 ## DataFile <- ("dailyviews2020032600.tsv")
24
25 ## related.searches.top <- read.table(paste(DataDir,DataFile, sep=""),
26 ##                                   sep="\t", header=TRUE,
27 ##                                   stringsAsFactors=FALSE)
28
29 ### Cleanup and do the grouping with functions from the Tidyverse
30 ### (see https://www.tidyverse.org for more info)
31
32 views <- views[,c("article", "project", "timestamp", "views")]
33 views$timestamp <- factor(views$timestamp)
34
35 ### Sorts and groups at the same time
36 views.by.proj.date <- arrange(group_by(views, project, timestamp),
37                         desc(views))
38
39 ### Export just the top 10 by pageviews
40 write.table(head(views.by.proj.date, 10),
41             file="output/top10_views_by_project_date.csv", sep=",",
42             row.names=FALSE)
43
44 ### A simple visualization
45 p <- ggplot(data=views.by.proj.date, aes(views))
46
47 ## Density plot with log-transformed axis
48 p + geom_density() + scale_x_log10(labels=comma)
49
50
51

Community Data Science Collective || Want to submit a patch?