4 ## df: dataframe to model
5 ## outcome_formula: formula for y | x, z
6 ## outcome_family: family for y | x, z
7 ## proxy_formula: formula for w | x, z, y
8 ## proxy_family: family for w | x, z, y
9 ## truth_formula: formula for x | z
10 ## truth_family: family for x | z
12 ### ideal formulas for example 1
13 # test.fit.1 <- measerr_mle(df, y ~ x + z, gaussian(), w_pred ~ x, binomial(link='logit'), x ~ z)
15 ### ideal formulas for example 2
16 # test.fit.2 <- measerr_mle(df, y ~ x + z, gaussian(), w_pred ~ x + z + y + y:x, binomial(link='logit'), x ~ z)
19 ## outcome_formula <- y ~ x + z; proxy_formula <- w_pred ~ y + x + z + x:z + x:y + z:y
20 measerr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='logit'), proxy_formula, proxy_family=binomial(link='logit')){
22 nll <- function(params){
23 df.obs <- model.frame(outcome_formula, df)
24 proxy.variable <- all.vars(proxy_formula)[1]
25 proxy.model.matrix <- model.matrix(proxy_formula, df)
26 response.var <- all.vars(outcome_formula)[1]
27 y.obs <- with(df.obs,eval(parse(text=response.var)))
28 outcome.model.matrix <- model.matrix(outcome_formula, df.obs)
31 n.outcome.model.covars <- dim(outcome.model.matrix)[2]
32 outcome.params <- params[param.idx:n.outcome.model.covars]
33 param.idx <- param.idx + n.outcome.model.covars
35 if((outcome_family$family == "binomial") & (outcome_family$link == 'logit')){
36 ll.y.obs <- vector(mode='numeric', length=length(y.obs))
37 ll.y.obs[y.obs==1] <- plogis(outcome.params %*% t(outcome.model.matrix[y.obs==1,]),log=TRUE)
38 ll.y.obs[y.obs==0] <- plogis(outcome.params %*% t(outcome.model.matrix[y.obs==0,]),log=TRUE,lower.tail=FALSE)
41 df.obs <- model.frame(proxy_formula,df)
42 n.proxy.model.covars <- dim(proxy.model.matrix)[2]
43 proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)]
45 param.idx <- param.idx + n.proxy.model.covars
46 proxy.obs <- with(df.obs, eval(parse(text=proxy.variable)))
48 if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
49 ll.w.obs <- vector(mode='numeric',length=dim(proxy.model.matrix)[1])
50 ll.w.obs[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==1,]),log=TRUE)
51 ll.w.obs[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==0,]),log=TRUE, lower.tail=FALSE)
54 ll.obs <- sum(ll.y.obs + ll.w.obs)
56 df.unobs <- df[is.na(df[[response.var]])]
57 df.unobs.y1 <- copy(df.unobs)
58 df.unobs.y1[[response.var]] <- 1
59 df.unobs.y0 <- copy(df.unobs)
60 df.unobs.y0[[response.var]] <- 0
63 outcome.model.matrix.y1 <- model.matrix(outcome_formula, df.unobs.y1)
65 if((outcome_family$family == "binomial") & (outcome_family$link == 'logit')){
66 ll.y.unobs.1 <- vector(mode='numeric', length=dim(outcome.model.matrix.y1)[1])
67 ll.y.unobs.0 <- vector(mode='numeric', length=dim(outcome.model.matrix.y1)[1])
68 ll.y.unobs.1 <- plogis(outcome.params %*% t(outcome.model.matrix.y1),log=TRUE)
69 ll.y.unobs.0 <- plogis(outcome.params %*% t(outcome.model.matrix.y1),log=TRUE,lower.tail=FALSE)
72 proxy.model.matrix.y1 <- model.matrix(proxy_formula, df.unobs.y1)
73 proxy.model.matrix.y0 <- model.matrix(proxy_formula, df.unobs.y0)
74 proxy.unobs <- with(df.unobs, eval(parse(text=proxy.variable)))
76 if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
77 ll.w.unobs.1 <- vector(mode='numeric',length=dim(proxy.model.matrix.y1)[1])
78 ll.w.unobs.0 <- vector(mode='numeric',length=dim(proxy.model.matrix.y0)[1])
79 ll.w.unobs.1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.y1[proxy.unobs==1,]),log=TRUE)
80 ll.w.unobs.1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.y1[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE)
82 ll.w.unobs.0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.y0[proxy.unobs==1,]),log=TRUE)
83 ll.w.unobs.0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.y0[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE)
86 ll.unobs.1 <- ll.y.unobs.1 + ll.w.unobs.1
87 ll.unobs.0 <- ll.y.unobs.0 + ll.w.unobs.0
88 ll.unobs <- sum(colLogSumExps(rbind(ll.unobs.1,ll.unobs.0)))
89 ll <- ll.unobs + ll.obs
93 params <- colnames(model.matrix(outcome_formula,df))
94 lower <- rep(-Inf, length(params))
95 proxy.params <- colnames(model.matrix(proxy_formula, df))
96 params <- c(params, paste0('proxy_',proxy.params))
97 lower <- c(lower, rep(-Inf, length(proxy.params)))
98 start <- rep(0.1,length(params))
99 names(start) <- params
101 fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6))
105 measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit')){
107 measrr_mle_nll <- function(params){
108 df.obs <- model.frame(outcome_formula, df)
110 proxy.variable <- all.vars(proxy_formula)[1]
111 proxy.model.matrix <- model.matrix(proxy_formula, df)
113 response.var <- all.vars(outcome_formula)[1]
114 y.obs <- with(df.obs,eval(parse(text=response.var)))
116 outcome.model.matrix <- model.matrix(outcome_formula, df)
119 n.outcome.model.covars <- dim(outcome.model.matrix)[2]
120 outcome.params <- params[param.idx:n.outcome.model.covars]
121 param.idx <- param.idx + n.outcome.model.covars
123 ## likelihood for the fully observed data
124 if(outcome_family$family == "gaussian"){
125 sigma.y <- params[param.idx]
126 param.idx <- param.idx + 1
128 # outcome_formula likelihood using linear regression
129 ll.y.obs <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix),sd=sigma.y, log=TRUE)
132 df.obs <- model.frame(proxy_formula,df)
133 n.proxy.model.covars <- dim(proxy.model.matrix)[2]
134 proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)]
135 param.idx <- param.idx + n.proxy.model.covars
136 proxy.obs <- with(df.obs, eval(parse(text=proxy.variable)))
138 if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
139 ll.w.obs <- vector(mode='numeric',length=dim(proxy.model.matrix)[1])
141 # proxy_formula likelihood using logistic regression
142 ll.w.obs[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==1,]),log=TRUE)
143 ll.w.obs[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==0,]),log=TRUE, lower.tail=FALSE)
146 df.obs <- model.frame(truth_formula, df)
147 truth.variable <- all.vars(truth_formula)[1]
148 truth.obs <- with(df.obs, eval(parse(text=truth.variable)))
149 truth.model.matrix <- model.matrix(truth_formula,df)
150 n.truth.model.covars <- dim(truth.model.matrix)[2]
152 truth.params <- params[param.idx:(n.truth.model.covars + param.idx - 1)]
154 if( (truth_family$family=="binomial") & (truth_family$link=='logit')){
155 ll.x.obs <- vector(mode='numeric',length=dim(truth.model.matrix)[1])
157 # truth_formula likelihood using logistic regression
158 ll.x.obs[truth.obs==1] <- plogis(truth.params %*% t(truth.model.matrix[truth.obs==1,]),log=TRUE)
159 ll.x.obs[truth.obs==0] <- plogis(truth.params %*% t(truth.model.matrix[truth.obs==0,]),log=TRUE, lower.tail=FALSE)
162 # add the three likelihoods
163 ll.obs <- sum(ll.y.obs + ll.w.obs + ll.x.obs)
165 ## likelihood for the predicted data
166 ## integrate out the "truth" variable.
168 if(truth_family$family=='binomial'){
169 df.unobs <- df[is.na(eval(parse(text=truth.variable)))]
170 df.unobs.x1 <- copy(df.unobs)
171 df.unobs.x1[,'x'] <- 1
172 df.unobs.x0 <- copy(df.unobs)
173 df.unobs.x0[,'x'] <- 0
174 outcome.unobs <- with(df.unobs, eval(parse(text=response.var)))
176 outcome.model.matrix.x0 <- model.matrix(outcome_formula, df.unobs.x0)
177 outcome.model.matrix.x1 <- model.matrix(outcome_formula, df.unobs.x1)
178 if(outcome_family$family=="gaussian"){
180 # likelihood of outcome
181 ll.y.x0 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x0), sd=sigma.y, log=TRUE)
182 ll.y.x1 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x1), sd=sigma.y, log=TRUE)
185 if( (proxy_family$family=='binomial') & (proxy_family$link=='logit')){
187 proxy.model.matrix.x0 <- model.matrix(proxy_formula, df.unobs.x0)
188 proxy.model.matrix.x1 <- model.matrix(proxy_formula, df.unobs.x1)
189 proxy.unobs <- df.unobs[[proxy.variable]]
190 ll.w.x0 <- vector(mode='numeric', length=dim(df.unobs)[1])
191 ll.w.x1 <- vector(mode='numeric', length=dim(df.unobs)[1])
193 # likelihood of proxy
194 ll.w.x0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.unobs==1,]), log=TRUE)
195 ll.w.x1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.unobs==1,]), log=TRUE)
197 ll.w.x0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.unobs==0,]), log=TRUE,lower.tail=FALSE)
198 ll.w.x1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.unobs==0,]), log=TRUE,lower.tail=FALSE)
201 if(truth_family$link=='logit'){
202 truth.model.matrix <- model.matrix(truth_formula, df.unobs.x0)
203 # likelihood of truth
204 ll.x.x1 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE)
205 ll.x.x0 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE, lower.tail=FALSE)
209 ll.x0 <- ll.y.x0 + ll.w.x0 + ll.x.x0
210 ll.x1 <- ll.y.x1 + ll.w.x1 + ll.x.x1
211 ll.unobs <- sum(colLogSumExps(rbind(ll.x0, ll.x1)))
212 return(-(ll.unobs + ll.obs))
215 outcome.params <- colnames(model.matrix(outcome_formula,df))
216 lower <- rep(-Inf, length(outcome.params))
218 if(outcome_family$family=='gaussian'){
219 params <- c(outcome.params, 'sigma_y')
220 lower <- c(lower, 0.00001)
222 params <- outcome.params
225 proxy.params <- colnames(model.matrix(proxy_formula, df))
226 params <- c(params, paste0('proxy_',proxy.params))
227 lower <- c(lower, rep(-Inf, length(proxy.params)))
229 truth.params <- colnames(model.matrix(truth_formula, df))
230 params <- c(params, paste0('truth_', truth.params))
231 lower <- c(lower, rep(-Inf, length(truth.params)))
232 start <- rep(0.1,length(params))
233 names(start) <- params
235 fit <- optim(start, fn = measrr_mle_nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6))