4 ## df: dataframe to model
5 ## outcome_formula: formula for y | x, z
6 ## outcome_family: family for y | x, z
7 ## proxy_formula: formula for w | x, z, y
8 ## proxy_family: family for w | x, z, y
9 ## truth_formula: formula for x | z
10 ## truth_family: family for x | z
12 ### ideal formulas for example 1
13 # test.fit.1 <- measerr_mle(df, y ~ x + z, gaussian(), w_pred ~ x, binomial(link='logit'), x ~ z)
15 ### ideal formulas for example 2
16 # test.fit.2 <- measerr_mle(df, y ~ x + z, gaussian(), w_pred ~ x + z + y + y:x, binomial(link='logit'), x ~ z)
19 ## outcome_formula <- y ~ x + z; proxy_formula <- w_pred ~ y + x + z + x:z + x:y + z:y
20 measerr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='logit'), proxy_formula, proxy_family=binomial(link='logit'),method='optim'){
22 nll <- function(params){
23 df.obs <- model.frame(outcome_formula, df)
24 proxy.variable <- all.vars(proxy_formula)[1]
25 proxy.model.matrix <- model.matrix(proxy_formula, df)
26 response.var <- all.vars(outcome_formula)[1]
27 y.obs <- with(df.obs,eval(parse(text=response.var)))
28 outcome.model.matrix <- model.matrix(outcome_formula, df.obs)
31 n.outcome.model.covars <- dim(outcome.model.matrix)[2]
32 outcome.params <- params[param.idx:n.outcome.model.covars]
33 param.idx <- param.idx + n.outcome.model.covars
35 if((outcome_family$family == "binomial") & (outcome_family$link == 'logit')){
36 ll.y.obs <- vector(mode='numeric', length=length(y.obs))
37 ll.y.obs[y.obs==1] <- plogis(outcome.params %*% t(outcome.model.matrix[y.obs==1,]),log=TRUE)
38 ll.y.obs[y.obs==0] <- plogis(outcome.params %*% t(outcome.model.matrix[y.obs==0,]),log=TRUE,lower.tail=FALSE)
41 df.obs <- model.frame(proxy_formula,df)
42 n.proxy.model.covars <- dim(proxy.model.matrix)[2]
43 proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)]
45 param.idx <- param.idx + n.proxy.model.covars
46 proxy.obs <- with(df.obs, eval(parse(text=proxy.variable)))
48 if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
49 ll.w.obs <- vector(mode='numeric',length=dim(proxy.model.matrix)[1])
50 ll.w.obs[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==1,]),log=TRUE)
51 ll.w.obs[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==0,]),log=TRUE, lower.tail=FALSE)
54 ll.obs <- sum(ll.y.obs + ll.w.obs)
56 df.unobs <- df[is.na(df[[response.var]])]
57 df.unobs.y1 <- copy(df.unobs)
58 df.unobs.y1[[response.var]] <- 1
59 df.unobs.y0 <- copy(df.unobs)
60 df.unobs.y0[[response.var]] <- 0
63 outcome.model.matrix.y1 <- model.matrix(outcome_formula, df.unobs.y1)
65 if((outcome_family$family == "binomial") & (outcome_family$link == 'logit')){
66 ll.y.unobs.1 <- vector(mode='numeric', length=dim(outcome.model.matrix.y1)[1])
67 ll.y.unobs.0 <- vector(mode='numeric', length=dim(outcome.model.matrix.y1)[1])
68 ll.y.unobs.1 <- plogis(outcome.params %*% t(outcome.model.matrix.y1),log=TRUE)
69 ll.y.unobs.0 <- plogis(outcome.params %*% t(outcome.model.matrix.y1),log=TRUE,lower.tail=FALSE)
72 proxy.model.matrix.y1 <- model.matrix(proxy_formula, df.unobs.y1)
73 proxy.model.matrix.y0 <- model.matrix(proxy_formula, df.unobs.y0)
74 proxy.unobs <- with(df.unobs, eval(parse(text=proxy.variable)))
76 if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
77 ll.w.unobs.1 <- vector(mode='numeric',length=dim(proxy.model.matrix.y1)[1])
78 ll.w.unobs.0 <- vector(mode='numeric',length=dim(proxy.model.matrix.y0)[1])
79 ll.w.unobs.1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.y1[proxy.unobs==1,]),log=TRUE)
80 ll.w.unobs.1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.y1[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE)
82 ll.w.unobs.0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.y0[proxy.unobs==1,]),log=TRUE)
83 ll.w.unobs.0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.y0[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE)
86 ll.unobs.1 <- ll.y.unobs.1 + ll.w.unobs.1
87 ll.unobs.0 <- ll.y.unobs.0 + ll.w.unobs.0
88 ll.unobs <- sum(colLogSumExps(rbind(ll.unobs.1,ll.unobs.0)))
89 ll <- ll.unobs + ll.obs
93 params <- colnames(model.matrix(outcome_formula,df))
94 lower <- rep(-Inf, length(params))
95 proxy.params <- colnames(model.matrix(proxy_formula, df))
96 params <- c(params, paste0('proxy_',proxy.params))
97 lower <- c(lower, rep(-Inf, length(proxy.params)))
98 start <- rep(0.1,length(params))
99 names(start) <- params
102 fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6))
104 quoted.names <- gsub("[\\(\\)]",'',names(start))
106 text <- paste("function(", paste0(quoted.names,'=',start,collapse=','),"){params<-c(",paste0(quoted.names,collapse=','),");return(nll(params))}")
108 measerr_mle_nll <- eval(parse(text=text))
109 names(start) <- quoted.names
110 names(lower) <- quoted.names
111 fit <- mle2(minuslogl=measerr_mle_nll, start=start, lower=lower, parnames=params,control=list(maxit=1e6),method='L-BFGS-B')
116 ## Experimental, and not necessary if errors are independent.
117 measerr_irr_mle <- function(df, outcome_formula, outcome_family=gaussian(), rater_formula, proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit'),method='optim'){
119 ### in this scenario, the ground truth also has measurement error, but we have repeated measures for it.
121 ## probability of y given observed data.
122 df.obs <- df[!is.na(x.obs.1)]
123 proxy.variable <- all.vars(proxy_formula)[1]
124 df.x.obs.1 <- copy(df.obs)[,x:=1]
125 df.x.obs.0 <- copy(df.obs)[,x:=0]
128 nll <- function(params){
129 outcome.model.matrix.x.obs.0 <- model.matrix(outcome_formula, df.x.obs.0)
130 outcome.model.matrix.x.obs.1 <- model.matrix(outcome_formula, df.x.obs.1)
133 n.outcome.model.covars <- dim(outcome.model.matrix.x.obs.0)[2]
134 outcome.params <- params[param.idx:n.outcome.model.covars]
135 param.idx <- param.idx + n.outcome.model.covars
137 sigma.y <- params[param.idx]
138 param.idx <- param.idx + 1
140 ll.y.x.obs.0 <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix.x.obs.0),sd=sigma.y, log=TRUE)
141 ll.y.x.obs.1 <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix.x.obs.1),sd=sigma.y, log=TRUE)
143 ## assume that the two coders are statistically independent conditional on x
144 ll.x.obs.0.x0 <- vector(mode='numeric', length=nrow(df.obs))
145 ll.x.obs.1.x0 <- vector(mode='numeric', length=nrow(df.obs))
146 ll.x.obs.0.x1 <- vector(mode='numeric', length=nrow(df.obs))
147 ll.x.obs.1.x1 <- vector(mode='numeric', length=nrow(df.obs))
149 rater.model.matrix.x.obs.0 <- model.matrix(rater_formula, df.x.obs.0)
150 rater.model.matrix.x.obs.1 <- model.matrix(rater_formula, df.x.obs.1)
152 n.rater.model.covars <- dim(rater.model.matrix.x.obs.0)[2]
153 rater.0.params <- params[param.idx:(n.rater.model.covars + param.idx - 1)]
154 param.idx <- param.idx + n.rater.model.covars
156 rater.1.params <- params[param.idx:(n.rater.model.covars + param.idx - 1)]
157 param.idx <- param.idx + n.rater.model.covars
159 # probability of rater 0 if x is 0 or 1
160 ll.x.obs.0.x0[df.obs$x.obs.0==1] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.0==1,]), log=TRUE)
161 ll.x.obs.0.x0[df.obs$x.obs.0==0] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.0==0,]), log=TRUE, lower.tail=FALSE)
162 ll.x.obs.0.x1[df.obs$x.obs.0==1] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.0==1,]), log=TRUE)
163 ll.x.obs.0.x1[df.obs$x.obs.0==0] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.0==0,]), log=TRUE, lower.tail=FALSE)
165 # probability of rater 1 if x is 0 or 1
166 ll.x.obs.1.x0[df.obs$x.obs.1==1] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.1==1,]), log=TRUE)
167 ll.x.obs.1.x0[df.obs$x.obs.1==0] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.1==0,]), log=TRUE, lower.tail=FALSE)
168 ll.x.obs.1.x1[df.obs$x.obs.1==1] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.1==1,]), log=TRUE)
169 ll.x.obs.1.x1[df.obs$x.obs.1==0] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.1==0,]), log=TRUE, lower.tail=FALSE)
171 proxy.model.matrix.x0 <- model.matrix(proxy_formula, df.x.obs.0)
172 proxy.model.matrix.x1 <- model.matrix(proxy_formula, df.x.obs.1)
174 n.proxy.model.covars <- dim(proxy.model.matrix.x0)[2]
175 proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)]
176 param.idx <- param.idx + n.proxy.model.covars
178 proxy.obs <- with(df.obs, eval(parse(text=proxy.variable)))
180 if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
181 ll.w.obs.x0 <- vector(mode='numeric',length=dim(proxy.model.matrix.x0)[1])
182 ll.w.obs.x1 <- vector(mode='numeric',length=dim(proxy.model.matrix.x1)[1])
184 # proxy_formula likelihood using logistic regression
185 ll.w.obs.x0[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.obs==1,]),log=TRUE)
186 ll.w.obs.x0[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.obs==0,]),log=TRUE, lower.tail=FALSE)
188 ll.w.obs.x1[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.obs==1,]),log=TRUE)
189 ll.w.obs.x1[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.obs==0,]),log=TRUE, lower.tail=FALSE)
192 ## assume that the probability of x is a logistic regression depending on z
193 truth.model.matrix.obs <- model.matrix(truth_formula, df.obs)
194 n.truth.params <- dim(truth.model.matrix.obs)[2]
195 truth.params <- params[param.idx:(n.truth.params + param.idx - 1)]
197 ll.obs.x0 <- plogis(truth.params %*% t(truth.model.matrix.obs), log=TRUE)
198 ll.obs.x1 <- plogis(truth.params %*% t(truth.model.matrix.obs), log=TRUE, lower.tail=FALSE)
200 ll.obs <- colLogSumExps(rbind(ll.y.x.obs.0 + ll.x.obs.0.x0 + ll.x.obs.1.x0 + ll.obs.x0 + ll.w.obs.x0,
201 ll.y.x.obs.1 + ll.x.obs.0.x1 + ll.x.obs.1.x1 + ll.obs.x1 + ll.w.obs.x1))
203 ### NOW FOR THE FUN PART. Likelihood of the unobserved data.
204 ### we have to integrate out x.obs.0, x.obs.1, and x.
208 df.unobs <- df[is.na(x.obs)]
209 df.x.unobs.0 <- copy(df.unobs)[,x:=0]
210 df.x.unobs.1 <- copy(df.unobs)[,x:=1]
211 y.unobs <- df.unobs$y
213 outcome.model.matrix.x.unobs.0 <- model.matrix(outcome_formula, df.x.unobs.0)
214 outcome.model.matrix.x.unobs.1 <- model.matrix(outcome_formula, df.x.unobs.1)
216 ll.y.unobs.x0 <- dnorm(y.unobs, outcome.params %*% t(outcome.model.matrix.x.unobs.0), sd=sigma.y, log=TRUE)
217 ll.y.unobs.x1 <- dnorm(y.unobs, outcome.params %*% t(outcome.model.matrix.x.unobs.1), sd=sigma.y, log=TRUE)
220 ## THE UNLABELED DATA
223 ## assume that the two coders are statistically independent conditional on x
224 ll.x.unobs.0.x0 <- vector(mode='numeric', length=nrow(df.unobs))
225 ll.x.unobs.1.x0 <- vector(mode='numeric', length=nrow(df.unobs))
226 ll.x.unobs.0.x1 <- vector(mode='numeric', length=nrow(df.unobs))
227 ll.x.unobs.1.x1 <- vector(mode='numeric', length=nrow(df.unobs))
229 df.x.unobs.0[,x.obs := 1]
230 df.x.unobs.1[,x.obs := 1]
232 rater.model.matrix.x.unobs.0 <- model.matrix(rater_formula, df.x.unobs.0)
233 rater.model.matrix.x.unobs.1 <- model.matrix(rater_formula, df.x.unobs.1)
236 ## # probability of rater 0 if x is 0 or 1
237 ## ll.x.unobs.0.x0 <- colLogSumExps(rbind(plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE),
238 ## plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE, lower.tail=TRUE)))
240 ## ll.x.unobs.0.x1 <- colLogSumExps(rbind(plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE),
241 ## plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE, lower.tail=TRUE)))
243 ## # probability of rater 1 if x is 0 or 1
244 ## ll.x.unobs.1.x0 <- colLogSumExps(rbind(plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE),
245 ## plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE, lower.tail=TRUE)))
247 ## ll.x.unobs.1.x1 <- colLogSumExps(rbind(plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE),
248 ## plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE, lower.tail=TRUE)))
251 proxy.unobs <- with(df.unobs, eval(parse(text=proxy.variable)))
252 proxy.model.matrix.x0.unobs <- model.matrix(proxy_formula, df.x.unobs.0)
253 proxy.model.matrix.x1.unobs <- model.matrix(proxy_formula, df.x.unobs.1)
255 if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
256 ll.w.unobs.x0 <- vector(mode='numeric',length=dim(proxy.model.matrix.x0)[1])
257 ll.w.unobs.x1 <- vector(mode='numeric',length=dim(proxy.model.matrix.x1)[1])
260 # proxy_formula likelihood using logistic regression
261 ll.w.unobs.x0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0.unobs[proxy.unobs==1,]),log=TRUE)
262 ll.w.unobs.x0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x0.unobs[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE)
264 ll.w.unobs.x1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1.unobs[proxy.unobs==1,]),log=TRUE)
265 ll.w.unobs.x1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x1.unobs[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE)
268 truth.model.matrix.unobs <- model.matrix(truth_formula, df.unobs)
270 ll.unobs.x0 <- plogis(truth.params %*% t(truth.model.matrix.unobs), log=TRUE)
271 ll.unobs.x1 <- plogis(truth.params %*% t(truth.model.matrix.unobs), log=TRUE, lower.tail=FALSE)
273 ll.unobs <- colLogSumExps(rbind(ll.unobs.x0 + ll.w.unobs.x0 + ll.y.unobs.x0,
274 ll.unobs.x1 + ll.w.unobs.x1 + ll.y.unobs.x1))
276 return(-1 *( sum(ll.obs) + sum(ll.unobs)))
279 outcome.params <- colnames(model.matrix(outcome_formula,df))
280 lower <- rep(-Inf, length(outcome.params))
282 if(outcome_family$family=='gaussian'){
283 params <- c(outcome.params, 'sigma_y')
284 lower <- c(lower, 0.00001)
286 params <- outcome.params
289 rater.0.params <- colnames(model.matrix(rater_formula,df))
290 params <- c(params, paste0('rater_0',rater.0.params))
291 lower <- c(lower, rep(-Inf, length(rater.0.params)))
293 rater.1.params <- colnames(model.matrix(rater_formula,df))
294 params <- c(params, paste0('rater_1',rater.1.params))
295 lower <- c(lower, rep(-Inf, length(rater.1.params)))
297 proxy.params <- colnames(model.matrix(proxy_formula, df))
298 params <- c(params, paste0('proxy_',proxy.params))
299 lower <- c(lower, rep(-Inf, length(proxy.params)))
301 truth.params <- colnames(model.matrix(truth_formula, df))
302 params <- c(params, paste0('truth_', truth.params))
303 lower <- c(lower, rep(-Inf, length(truth.params)))
304 start <- rep(0.1,length(params))
305 names(start) <- params
309 fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6))
312 quoted.names <- gsub("[\\(\\)]",'',names(start))
314 text <- paste("function(", paste0(quoted.names,'=',start,collapse=','),"){params<-c(",paste0(quoted.names,collapse=','),");return(nll(params))}")
316 measerr_mle_nll <- eval(parse(text=text))
317 names(start) <- quoted.names
318 names(lower) <- quoted.names
319 fit <- mle2(minuslogl=measerr_mle_nll, start=start, lower=lower, parnames=params,control=list(maxit=1e6),method='L-BFGS-B')
326 measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit'),method='optim'){
328 measerr_mle_nll <- function(params){
329 df.obs <- model.frame(outcome_formula, df)
330 proxy.variable <- all.vars(proxy_formula)[1]
331 proxy.model.matrix <- model.matrix(proxy_formula, df)
332 response.var <- all.vars(outcome_formula)[1]
333 y.obs <- with(df.obs,eval(parse(text=response.var)))
335 outcome.model.matrix <- model.matrix(outcome_formula, df)
338 n.outcome.model.covars <- dim(outcome.model.matrix)[2]
339 outcome.params <- params[param.idx:n.outcome.model.covars]
340 param.idx <- param.idx + n.outcome.model.covars
342 ## likelihood for the fully observed data
343 if(outcome_family$family == "gaussian"){
344 sigma.y <- params[param.idx]
345 param.idx <- param.idx + 1
347 # outcome_formula likelihood using linear regression
348 ll.y.obs <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix),sd=sigma.y, log=TRUE)
351 df.obs <- model.frame(proxy_formula,df)
352 n.proxy.model.covars <- dim(proxy.model.matrix)[2]
353 proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)]
354 param.idx <- param.idx + n.proxy.model.covars
355 proxy.obs <- with(df.obs, eval(parse(text=proxy.variable)))
357 if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
358 ll.w.obs <- vector(mode='numeric',length=dim(proxy.model.matrix)[1])
360 # proxy_formula likelihood using logistic regression
361 ll.w.obs[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==1,]),log=TRUE)
362 ll.w.obs[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==0,]),log=TRUE, lower.tail=FALSE)
365 df.obs <- model.frame(truth_formula, df)
366 truth.variable <- all.vars(truth_formula)[1]
367 truth.obs <- with(df.obs, eval(parse(text=truth.variable)))
368 truth.model.matrix <- model.matrix(truth_formula,df)
369 n.truth.model.covars <- dim(truth.model.matrix)[2]
371 truth.params <- params[param.idx:(n.truth.model.covars + param.idx - 1)]
373 if( (truth_family$family=="binomial") & (truth_family$link=='logit')){
374 ll.x.obs <- vector(mode='numeric',length=dim(truth.model.matrix)[1])
376 # truth_formula likelihood using logistic regression
377 ll.x.obs[truth.obs==1] <- plogis(truth.params %*% t(truth.model.matrix[truth.obs==1,]),log=TRUE)
378 ll.x.obs[truth.obs==0] <- plogis(truth.params %*% t(truth.model.matrix[truth.obs==0,]),log=TRUE, lower.tail=FALSE)
381 # add the three likelihoods
382 ll.obs <- sum(ll.y.obs + ll.w.obs + ll.x.obs)
384 ## likelihood for the predicted data
385 ## integrate out the "truth" variable.
387 if(truth_family$family=='binomial'){
388 df.unobs <- df[is.na(eval(parse(text=truth.variable)))]
389 df.unobs.x1 <- copy(df.unobs)
390 df.unobs.x1[,'x'] <- 1
391 df.unobs.x0 <- copy(df.unobs)
392 df.unobs.x0[,'x'] <- 0
393 outcome.unobs <- with(df.unobs, eval(parse(text=response.var)))
395 outcome.model.matrix.x0 <- model.matrix(outcome_formula, df.unobs.x0)
396 outcome.model.matrix.x1 <- model.matrix(outcome_formula, df.unobs.x1)
397 if(outcome_family$family=="gaussian"){
399 # likelihood of outcome
400 ll.y.x0 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x0), sd=sigma.y, log=TRUE)
401 ll.y.x1 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x1), sd=sigma.y, log=TRUE)
404 if( (proxy_family$family=='binomial') & (proxy_family$link=='logit')){
406 proxy.model.matrix.x0 <- model.matrix(proxy_formula, df.unobs.x0)
407 proxy.model.matrix.x1 <- model.matrix(proxy_formula, df.unobs.x1)
408 proxy.unobs <- df.unobs[[proxy.variable]]
409 ll.w.x0 <- vector(mode='numeric', length=dim(df.unobs)[1])
410 ll.w.x1 <- vector(mode='numeric', length=dim(df.unobs)[1])
412 # likelihood of proxy
413 ll.w.x0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.unobs==1,]), log=TRUE)
414 ll.w.x1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.unobs==1,]), log=TRUE)
416 ll.w.x0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.unobs==0,]), log=TRUE,lower.tail=FALSE)
417 ll.w.x1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.unobs==0,]), log=TRUE,lower.tail=FALSE)
420 if(truth_family$link=='logit'){
421 truth.model.matrix <- model.matrix(truth_formula, df.unobs.x0)
422 # likelihood of truth
423 ll.x.x1 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE)
424 ll.x.x0 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE, lower.tail=FALSE)
428 ll.x0 <- ll.y.x0 + ll.w.x0 + ll.x.x0
429 ll.x1 <- ll.y.x1 + ll.w.x1 + ll.x.x1
430 ll.unobs <- sum(colLogSumExps(rbind(ll.x0, ll.x1)))
431 return(-(ll.unobs + ll.obs))
434 outcome.params <- colnames(model.matrix(outcome_formula,df))
435 lower <- rep(-Inf, length(outcome.params))
437 if(outcome_family$family=='gaussian'){
438 params <- c(outcome.params, 'sigma_y')
439 lower <- c(lower, 0.00001)
441 params <- outcome.params
444 proxy.params <- colnames(model.matrix(proxy_formula, df))
445 params <- c(params, paste0('proxy_',proxy.params))
446 lower <- c(lower, rep(-Inf, length(proxy.params)))
448 truth.params <- colnames(model.matrix(truth_formula, df))
449 params <- c(params, paste0('truth_', truth.params))
450 lower <- c(lower, rep(-Inf, length(truth.params)))
451 start <- rep(0.1,length(params))
452 names(start) <- params
455 fit <- optim(start, fn = measerr_mle_nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6))
456 } else { # method='mle2'
458 quoted.names <- gsub("[\\(\\)]",'',names(start))
460 text <- paste("function(", paste0(quoted.names,'=',start,collapse=','),"){params<-c(",paste0(quoted.names,collapse=','),");return(measerr_mle_nll(params))}")
462 measerr_mle_nll_mle <- eval(parse(text=text))
463 names(start) <- quoted.names
464 names(lower) <- quoted.names
465 fit <- mle2(minuslogl=measerr_mle_nll_mle, start=start, lower=lower, parnames=params,control=list(maxit=1e6),method='L-BFGS-B')