]> code.communitydata.science - ml_measurement_error_public.git/blob - simulations/simulation_base.R
update plotting code and makefile
[ml_measurement_error_public.git] / simulations / simulation_base.R
1 library(predictionError)
2 library(mecor)
3 options(amelia.parallel="no",
4         amelia.ncpus=1)
5 library(Amelia)
6 library(Zelig)
7 library(stats4)
8
9
10 ## This uses the pseudolikelihood approach from Carroll page 349.
11 ## assumes MAR
12 ## assumes differential error, but that only depends on Y
13 ## inefficient, because pseudolikelihood
14 logistic.correction.pseudo <- function(df){
15     p1.est <- mean(df[w_pred==1]$y.obs==1,na.rm=T)
16     p0.est <- mean(df[w_pred==0]$y.obs==0,na.rm=T)
17     
18     nll <- function(B0, Bxy, Bgy){
19         probs <- (1 - p0.est) + (p1.est + p0.est - 1)*plogis(B0 + Bxy * df$x + Bgy * df$g)
20
21         part1 = sum(log(probs[df$w_pred == 1]))
22         part2 = sum(log(1-probs[df$w_pred == 0]))
23         
24         return(-1*(part1 + part2))
25     }
26     
27     mlefit <- stats4::mle(minuslogl = nll, start = list(B0=0, Bxy=0.0, Bgy=0.0))
28     return(mlefit)
29
30 }
31
32 ## This uses the likelihood approach from Carroll page 353.
33 ## assumes that we have a good measurement error model
34 logistic.correction.liklihood <- function(df){
35     
36     ## liklihood for observed responses
37     nll <- function(B0, Bxy, Bgy, gamma0, gamma_y, gamma_g){
38         df.obs <- df[!is.na(y.obs)]
39         p.y.obs <- plogis(B0 + Bxy * df.obs$x + Bgy*df.obs$g)
40         p.y.obs[df.obs$y==0] <- 1-p.y.obs[df.obs$y==0]
41         p.s.obs <- plogis(gamma0 + gamma_y * df.obs$y + gamma_g*df.obs$g)
42         p.s.obs[df.obs$w_pred==0] <- 1 - p.s.obs[df.obs$w_pred==0]
43         
44         p.obs <- p.s.obs * p.y.obs
45
46         df.unobs <- df[is.na(y.obs)]
47
48         p.unobs.1 <- plogis(B0 + Bxy * df.unobs$x + Bgy*df.unobs$g)*plogis(gamma0 + gamma_y + gamma_g*df.unobs$g)
49         p.unobs.0 <- (1-plogis(B0 + Bxy * df.unobs$x + Bgy*df.unobs$g))*plogis(gamma0 + gamma_g*df.unobs$g)
50         p.unobs <- p.unobs.1 + p.unobs.0
51         p.unobs[df.unobs$w_pred==0] <- 1 - p.unobs[df.unobs$w_pred==0]
52
53         p <- c(p.obs, p.unobs)
54
55         return(-1*(sum(log(p))))
56     }
57
58     mlefit <- stats4::mle(minuslogl = nll, start = list(B0=1, Bxy=0,Bgy=0, gamma0=5, gamma_y=0, gamma_g=0))
59
60     return(mlefit)
61 }
62
63
64 logistic <- function(x) {1/(1+exp(-1*x))}
65
66 run_simulation_depvar <- function(df, result){
67
68     accuracy <- df[,mean(w_pred==y)]
69     result <- append(result, list(accuracy=accuracy))
70
71     (model.true <- glm(y ~ x + g, data=df,family=binomial(link='logit')))
72     true.ci.Bxy <- confint(model.true)['x',]
73     true.ci.Bgy <- confint(model.true)['g',]
74
75     result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
76                                   Bgy.est.true=coef(model.true)['g'],
77                                   Bxy.ci.upper.true = true.ci.Bxy[2],
78                                   Bxy.ci.lower.true = true.ci.Bxy[1],
79                                   Bgy.ci.upper.true = true.ci.Bgy[2],
80                                   Bgy.ci.lower.true = true.ci.Bgy[1]))
81                                   
82     (model.feasible <- glm(y.obs~x+g,data=df,family=binomial(link='logit')))
83
84     feasible.ci.Bxy <- confint(model.feasible)['x',]
85     result <- append(result, list(Bxy.est.feasible=coef(model.feasible)['x'],
86                                   Bxy.ci.upper.feasible = feasible.ci.Bxy[2],
87                                   Bxy.ci.lower.feasible = feasible.ci.Bxy[1]))
88
89     feasible.ci.Bgy <- confint(model.feasible)['g',]
90     result <- append(result, list(Bgy.est.feasible=coef(model.feasible)['g'],
91                                   Bgy.ci.upper.feasible = feasible.ci.Bgy[2],
92                                   Bgy.ci.lower.feasible = feasible.ci.Bgy[1]))
93
94     (model.naive <- glm(w_pred~x+g, data=df, family=binomial(link='logit')))
95
96     naive.ci.Bxy <- confint(model.naive)['x',]
97     naive.ci.Bgy <- confint(model.naive)['g',]
98
99     result <- append(result, list(Bxy.est.naive=coef(model.naive)['x'],
100                                   Bgy.est.naive=coef(model.naive)['g'],
101                                   Bxy.ci.upper.naive = naive.ci.Bxy[2],
102                                   Bxy.ci.lower.naive = naive.ci.Bxy[1],
103                                   Bgy.ci.upper.naive = naive.ci.Bgy[2],
104                                   Bgy.ci.lower.naive = naive.ci.Bgy[1]))
105
106
107     (model.naive.cont <- lm(w~x+g, data=df))
108     naivecont.ci.Bxy <- confint(model.naive.cont)['x',]
109     naivecont.ci.Bgy <- confint(model.naive.cont)['g',]
110
111     ## my implementatoin of liklihood based correction
112     mod.caroll.lik <- logistic.correction.liklihood(df)
113     coef <- coef(mod.caroll.lik)
114     ci <- confint(mod.caroll.lik)
115
116     result <- append(result,
117                      list(Bxy.est.mle = coef['Bxy'],
118                           Bxy.ci.upper.mle = ci['Bxy','97.5 %'],
119                           Bxy.ci.lower.mle = ci['Bxy','2.5 %'],
120                           Bgy.est.mle = coef['Bgy'],
121                           Bgy.ci.upper.mle = ci['Bgy','97.5 %'],
122                           Bgy.ci.lower.mle = ci['Bgy','2.5 %']))
123                           
124
125     ## my implementatoin of liklihood based correction
126     mod.caroll.pseudo <- logistic.correction.pseudo(df)
127     coef <- coef(mod.caroll.pseudo)
128     ci <- confint(mod.caroll.pseudo)
129
130     result <- append(result,
131                      list(Bxy.est.pseudo = coef['Bxy'],
132                           Bxy.ci.upper.pseudo = ci['Bxy','97.5 %'],
133                           Bxy.ci.lower.pseudo = ci['Bxy','2.5 %'],
134                           Bgy.est.pseudo = coef['Bgy'],
135                           Bgy.ci.upper.pseudo = ci['Bgy','97.5 %'],
136                           Bgy.ci.lower.pseudo = ci['Bgy','2.5 %']))
137                           
138
139     # amelia says use normal distribution for binary variables.
140     amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('y','ystar','w_pred'))
141     mod.amelia.k <- zelig(y.obs~x+g, model='ls', data=amelia.out.k$imputations, cite=FALSE)
142     (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
143
144     est.x.mi <- coefse['x','Estimate']
145     est.x.se <- coefse['x','Std.Error']
146     result <- append(result,
147                      list(Bxy.est.amelia.full = est.x.mi,
148                           Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
149                           Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se
150                           ))
151
152     est.g.mi <- coefse['g','Estimate']
153     est.g.se <- coefse['g','Std.Error']
154
155     result <- append(result,
156                      list(Bgy.est.amelia.full = est.g.mi,
157                           Bgy.ci.upper.amelia.full = est.g.mi + 1.96 * est.g.se,
158                           Bgy.ci.lower.amelia.full = est.g.mi - 1.96 * est.g.se
159                           ))
160
161     return(result)
162
163 }
164
165 run_simulation <-  function(df, result){
166
167     accuracy <- df[,mean(w_pred==x)]
168     result <- append(result, list(accuracy=accuracy))
169
170     (model.true <- lm(y ~ x + g, data=df))
171     true.ci.Bxy <- confint(model.true)['x',]
172     true.ci.Bgy <- confint(model.true)['g',]
173
174     result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
175                                   Bgy.est.true=coef(model.true)['g'],
176                                   Bxy.ci.upper.true = true.ci.Bxy[2],
177                                   Bxy.ci.lower.true = true.ci.Bxy[1],
178                                   Bgy.ci.upper.true = true.ci.Bgy[2],
179                                   Bgy.ci.lower.true = true.ci.Bgy[1]))
180                                   
181     (model.feasible <- lm(y~x.obs+g,data=df))
182
183     feasible.ci.Bxy <- confint(model.feasible)['x.obs',]
184     result <- append(result, list(Bxy.est.feasible=coef(model.feasible)['x.obs'],
185                                   Bxy.ci.upper.feasible = feasible.ci.Bxy[2],
186                                   Bxy.ci.lower.feasible = feasible.ci.Bxy[1]))
187
188     feasible.ci.Bgy <- confint(model.feasible)['g',]
189     result <- append(result, list(Bgy.est.feasible=coef(model.feasible)['g'],
190                                   Bgy.ci.upper.feasible = feasible.ci.Bgy[2],
191                                   Bgy.ci.lower.feasible = feasible.ci.Bgy[1]))
192
193     (model.naive <- lm(y~w+g, data=df))
194     
195     naive.ci.Bxy <- confint(model.naive)['w',]
196     naive.ci.Bgy <- confint(model.naive)['g',]
197
198     result <- append(result, list(Bxy.est.naive=coef(model.naive)['w'],
199                                   Bgy.est.naive=coef(model.naive)['g'],
200                                   Bxy.ci.upper.naive = naive.ci.Bxy[2],
201                                   Bxy.ci.lower.naive = naive.ci.Bxy[1],
202                                   Bgy.ci.upper.naive = naive.ci.Bgy[2],
203                                   Bgy.ci.lower.naive = naive.ci.Bgy[1]))
204                                   
205
206     amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('x','w_pred'))
207     mod.amelia.k <- zelig(y~x.obs+g, model='ls', data=amelia.out.k$imputations, cite=FALSE)
208     (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
209
210     est.x.mi <- coefse['x.obs','Estimate']
211     est.x.se <- coefse['x.obs','Std.Error']
212     result <- append(result,
213                      list(Bxy.est.amelia.full = est.x.mi,
214                           Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
215                           Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se
216                           ))
217
218     est.g.mi <- coefse['g','Estimate']
219     est.g.se <- coefse['g','Std.Error']
220
221     result <- append(result,
222                      list(Bgy.est.amelia.full = est.g.mi,
223                           Bgy.ci.upper.amelia.full = est.g.mi + 1.96 * est.g.se,
224                           Bgy.ci.lower.amelia.full = est.g.mi - 1.96 * est.g.se
225                           ))
226
227     ## What if we can't observe k -- most realistic scenario. We can't include all the ML features in a model.
228     ## amelia.out.nok <- amelia(df, m=200, p2s=0, idvars=c("x","w_pred"), noms=noms)
229     ## mod.amelia.nok <- zelig(y~x.obs+g, model='ls', data=amelia.out.nok$imputations, cite=FALSE)
230     ## (coefse <- combine_coef_se(mod.amelia.nok, messages=FALSE))
231
232     ## est.x.mi <- coefse['x.obs','Estimate']
233     ## est.x.se <- coefse['x.obs','Std.Error']
234     ## result <- append(result,
235     ##                  list(Bxy.est.amelia.nok = est.x.mi,
236     ##                       Bxy.ci.upper.amelia.nok = est.x.mi + 1.96 * est.x.se,
237     ##                       Bxy.ci.lower.amelia.nok = est.x.mi - 1.96 * est.x.se
238     ##                       ))
239
240     ## est.g.mi <- coefse['g','Estimate']
241     ## est.g.se <- coefse['g','Std.Error']
242
243     ## result <- append(result,
244     ##                  list(Bgy.est.amelia.nok = est.g.mi,
245     ##                       Bgy.ci.upper.amelia.nok = est.g.mi + 1.96 * est.g.se,
246     ##                       Bgy.ci.lower.amelia.nok = est.g.mi - 1.96 * est.g.se
247     ##                       ))
248
249     N <- nrow(df)
250     m <- nrow(df[!is.na(x.obs)])
251     p <- v <- train <- rep(0,N)
252     M <- m
253     p[(M+1):(N)] <- 1
254     v[1:(M)] <- 1
255     df <- df[order(x.obs)]
256     y <- df[,y]
257     x <- df[,x.obs]
258     g <- df[,g]
259     w <- df[,w]
260     # gmm gets pretty close
261     (gmm.res <- predicted_covariates(y, x, g, w, v, train, p, max_iter=100, verbose=TRUE))
262
263     result <- append(result,
264                      list(Bxy.est.gmm = gmm.res$beta[1,1],
265                           Bxy.ci.upper.gmm = gmm.res$confint[1,2],
266                           Bxy.ci.lower.gmm = gmm.res$confint[1,1],
267                           gmm.ER_pval = gmm.res$ER_pval
268                           ))
269
270     result <- append(result,
271                      list(Bgy.est.gmm = gmm.res$beta[2,1],
272                           Bgy.ci.upper.gmm = gmm.res$confint[2,2],
273                           Bgy.ci.lower.gmm = gmm.res$confint[2,1]))
274
275
276     mod.calibrated.mle <- mecor(y ~ MeasError(w, reference = x.obs) + g, df, B=400, method='efficient')
277     (mod.calibrated.mle)
278     (mecor.ci <- summary(mod.calibrated.mle)$c$ci['x.obs',])
279     result <- append(result, list(
280                                  Bxy.est.mecor = mecor.ci['Estimate'],
281                                  Bxy.upper.mecor = mecor.ci['UCI'],
282                                  Bxy.lower.mecor = mecor.ci['LCI'])
283                      )
284
285     (mecor.ci <- summary(mod.calibrated.mle)$c$ci['g',])
286
287     result <- append(result, list(
288                                  Bgy.est.mecor = mecor.ci['Estimate'],
289                                  Bgy.upper.mecor = mecor.ci['UCI'],
290                                  Bgy.lower.mecor = mecor.ci['LCI'])
291                      )
292
293 ##    clean up memory
294 ##    rm(list=c("df","y","x","g","w","v","train","p","amelia.out.k","amelia.out.nok", "mod.calibrated.mle","gmm.res","mod.amelia.k","mod.amelia.nok", "model.true","model.naive","model.feasible"))
295     
296 ##    gc()
297     return(result)
298 }

Community Data Science Collective || Want to submit a patch?