## print(mean(df[z==1]$x == df[z==1]$w_pred))
## print(mean(df$w_pred == df$x))
+
resids <- resid(lm(y~x + z))
- odds.x1 <- qlogis(prediction_accuracy) + y_bias*qlogis(pnorm(resids[x==1])) + z_bias * qlogis(pnorm(z,sd(z)))
- odds.x0 <- qlogis(prediction_accuracy,lower.tail=F) + y_bias*qlogis(pnorm(resids[x==0])) + z_bias * qlogis(pnorm(z,sd(z)))
+ odds.x1 <- qlogis(prediction_accuracy) + y_bias*qlogis(pnorm(resids[x==1])) + z_bias * qlogis(pnorm(z[x==1],sd(z)))
+ odds.x0 <- qlogis(prediction_accuracy,lower.tail=F) + y_bias*qlogis(pnorm(resids[x==0])) + z_bias * qlogis(pnorm(z[x==0],sd(z)))
## acc.x0 <- p.correct[df[,x==0]]
## acc.x1 <- p.correct[df[,x==1]]
--- /dev/null
+library(stats4)
+library(bbmle)
+library(matrixStats)
+
+zhang.mle.dv <- function(df){
+ df.obs <- df[!is.na(y.obs)]
+ df.unobs <- df[is.na(y.obs)]
+
+ fp <- df.obs[(w_pred==1) & (y.obs != w_pred),.N]
+ tn <- df.obs[(w_pred == 0) & (y.obs == w_pred),.N]
+ fpr <- fp / (fp+tn)
+
+ fn <- df.obs[(w_pred==0) & (y.obs != w_pred), .N]
+ tp <- df.obs[(w_pred==1) & (y.obs == w_pred),.N]
+ fnr <- fn / (fn+tp)
+
+ nll <- function(B0=0, Bxy=0, Bzy=0){
+
+
+ ## observed case
+ ll.y.obs <- vector(mode='numeric', length=nrow(df.obs))
+ ll.y.obs[df.obs$y.obs==1] <- with(df.obs[y.obs==1], plogis(B0 + Bxy * x + Bzy * z,log=T))
+ ll.y.obs[df.obs$y.obs==0] <- with(df.obs[y.obs==0], plogis(B0 + Bxy * x + Bzy * z,log=T,lower.tail=FALSE))
+
+ ll <- sum(ll.y.obs)
+
+ pi.y.1 <- with(df.unobs,plogis(B0 + Bxy * x + Bzy*z, log=T))
+ #pi.y.0 <- with(df.unobs,plogis(B0 + Bxy * x + Bzy*z, log=T,lower.tail=FALSE))
+
+ lls <- with(df.unobs, colLogSumExps(rbind(w_pred * colLogSumExps(rbind(log(fpr), log(1 - fnr - fpr)+pi.y.1)),
+ (1-w_pred) * (log(1-fpr) - exp(log(1-fnr-fpr)+pi.y.1)))))
+
+ ll <- ll + sum(lls)
+ print(paste0(B0,Bxy,Bzy))
+ print(ll)
+ return(-ll)
+ }
+ mlefit <- mle2(minuslogl = nll, control=list(maxit=1e6),method='L-BFGS-B',lower=c(B0=-Inf, Bxy=-Inf, Bzy=-Inf),
+ upper=c(B0=Inf, Bxy=Inf, Bzy=Inf))
+ return(mlefit)
+}
+
+
+## model from Zhang's arxiv paper, with predictions for y
+## Zhang got this model from Hausman 1998
+zhang.mle.iv <- function(df){
+ df.obs <- df[!is.na(x.obs)]
+ df.unobs <- df[is.na(x.obs)]
+
+ tn <- df.obs[(w_pred == 0) & (x.obs == w_pred),.N]
+ fn <- df.obs[(w_pred==0) & (x.obs==1), .N]
+ npv <- tn / (tn + fn)
+
+ tp <- df.obs[(w_pred==1) & (x.obs == w_pred),.N]
+ fp <- df.obs[(w_pred==1) & (x.obs == 0),.N]
+ ppv <- tp / (tp + fp)
+
+ nll <- function(B0=0, Bxy=0, Bzy=0, sigma_y=0.1){
+
+ ## fpr = 1 - TNR
+ ### Problem: accounting for uncertainty in ppv / npv
+
+ ## fnr = 1 - TPR
+ ll.y.obs <- with(df.obs, dnorm(y, B0 + Bxy * x + Bzy * z, sd=sigma_y,log=T))
+ ll <- sum(ll.y.obs)
+
+ # unobserved case; integrate out x
+ ll.x.1 <- with(df.unobs, dnorm(y, B0 + Bxy + Bzy * z, sd = sigma_y, log=T))
+ ll.x.0 <- with(df.unobs, dnorm(y, B0 + Bzy * z, sd = sigma_y,log=T))
+
+ ## case x == 1
+ lls.x.1 <- colLogSumExps(rbind(log(ppv) + ll.x.1, log(1-ppv) + ll.x.0))
+
+ ## case x == 0
+ lls.x.0 <- colLogSumExps(rbind(log(1-npv) + ll.x.1, log(npv) + ll.x.0))
+
+ lls <- colLogSumExps(rbind(df.unobs$w_pred * lls.x.1, (1-df.unobs$w_pred) * lls.x.0))
+ ll <- ll + sum(lls)
+ return(-ll)
+ }
+ mlefit <- mle2(minuslogl = nll, control=list(maxit=1e6), lower=list(sigma_y=0.0001, B0=-Inf, Bxy=-Inf, Bzy=-Inf),
+ upper=list(sigma_y=Inf, B0=Inf, Bxy=Inf, Bzy=Inf),method='L-BFGS-B')
+ return(mlefit)
+}